{"title":"基于程序行为的MOOC学习绩效预测评价模型:学生在线学习行为分析与算法构建","authors":"Yao Tong, Zehui Zhan","doi":"10.1108/itse-10-2022-0133","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners’ online learning behaviors, and comparing three algorithms – multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).\n\n\nDesign/methodology/approach\nThrough literature review and analysis of data correlation in the original database, a framework of online learning behavior indicators containing 26 behaviors was constructed. The degree of correlation with the final learning performance was analyzed based on learners’ system interaction behavior, resource interaction behavior, social interaction behavior and independent learning behavior. A total of 12 behaviors highly correlated to learning performance were extracted as major indicators, and the MLR method, MLP method and CART method were used as typical algorithms to evaluate learners’ MOOC learning performance.\n\n\nFindings\nThe behavioral indicator framework constructed in this study can effectively analyze learners’ learning, and the evaluation model constructed using the MLP method (89.91%) and CART method (90.29%) can better achieve the prediction of MOOC learners’ learning performance than using MLR method (83.64%).\n\n\nOriginality/value\nThis study explores the patterns and characteristics among different learning behaviors and constructs an effective prediction model for MOOC learners’ learning performance, which can help teachers understand learners’ learning status, locate learners with learning difficulties promptly and provide targeted instructional interventions at the right time to improve teaching quality.\n","PeriodicalId":44954,"journal":{"name":"Interactive Technology and Smart Education","volume":"20 1","pages":"291-312"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An evaluation model based on procedural behaviors for predicting MOOC learning performance: students' online learning behavior analytics and algorithms construction\",\"authors\":\"Yao Tong, Zehui Zhan\",\"doi\":\"10.1108/itse-10-2022-0133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners’ online learning behaviors, and comparing three algorithms – multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).\\n\\n\\nDesign/methodology/approach\\nThrough literature review and analysis of data correlation in the original database, a framework of online learning behavior indicators containing 26 behaviors was constructed. The degree of correlation with the final learning performance was analyzed based on learners’ system interaction behavior, resource interaction behavior, social interaction behavior and independent learning behavior. A total of 12 behaviors highly correlated to learning performance were extracted as major indicators, and the MLR method, MLP method and CART method were used as typical algorithms to evaluate learners’ MOOC learning performance.\\n\\n\\nFindings\\nThe behavioral indicator framework constructed in this study can effectively analyze learners’ learning, and the evaluation model constructed using the MLP method (89.91%) and CART method (90.29%) can better achieve the prediction of MOOC learners’ learning performance than using MLR method (83.64%).\\n\\n\\nOriginality/value\\nThis study explores the patterns and characteristics among different learning behaviors and constructs an effective prediction model for MOOC learners’ learning performance, which can help teachers understand learners’ learning status, locate learners with learning difficulties promptly and provide targeted instructional interventions at the right time to improve teaching quality.\\n\",\"PeriodicalId\":44954,\"journal\":{\"name\":\"Interactive Technology and Smart Education\",\"volume\":\"20 1\",\"pages\":\"291-312\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interactive Technology and Smart Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/itse-10-2022-0133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interactive Technology and Smart Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/itse-10-2022-0133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
An evaluation model based on procedural behaviors for predicting MOOC learning performance: students' online learning behavior analytics and algorithms construction
Purpose
The purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners’ online learning behaviors, and comparing three algorithms – multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).
Design/methodology/approach
Through literature review and analysis of data correlation in the original database, a framework of online learning behavior indicators containing 26 behaviors was constructed. The degree of correlation with the final learning performance was analyzed based on learners’ system interaction behavior, resource interaction behavior, social interaction behavior and independent learning behavior. A total of 12 behaviors highly correlated to learning performance were extracted as major indicators, and the MLR method, MLP method and CART method were used as typical algorithms to evaluate learners’ MOOC learning performance.
Findings
The behavioral indicator framework constructed in this study can effectively analyze learners’ learning, and the evaluation model constructed using the MLP method (89.91%) and CART method (90.29%) can better achieve the prediction of MOOC learners’ learning performance than using MLR method (83.64%).
Originality/value
This study explores the patterns and characteristics among different learning behaviors and constructs an effective prediction model for MOOC learners’ learning performance, which can help teachers understand learners’ learning status, locate learners with learning difficulties promptly and provide targeted instructional interventions at the right time to improve teaching quality.
期刊介绍:
Interactive Technology and Smart Education (ITSE) is a multi-disciplinary, peer-reviewed journal, which provides a distinct forum to specially promote innovation and participative research approaches. The following terms are defined, as used in the context of this journal: -Interactive Technology refers to all forms of digital technology, as described above, emphasizing innovation and human-/user-centred approaches. -Smart Education "SMART" is used as an acronym that refers to interactive technology that offers a more flexible and tailored approach to meet diverse individual requirements by being “Sensitive, Manageable, Adaptable, Responsive and Timely” to educators’ pedagogical strategies and learners’ educational and social needs’. -Articles are invited that explore innovative use of educational technologies that advance interactive technology in general and its applications in education in particular. The journal aims to bridge gaps in the field by promoting design research, action research, and continuous evaluation as an integral part of the development cycle of usable solutions/systems.