基于马氏距离的QRS实时复杂分类方法

J. Moraes, M.O. Seixas, F.N. Vilani, E.V. Costa
{"title":"基于马氏距离的QRS实时复杂分类方法","authors":"J. Moraes, M.O. Seixas, F.N. Vilani, E.V. Costa","doi":"10.1109/CIC.2002.1166742","DOIUrl":null,"url":null,"abstract":"An unsupervised method to recognize and classify QRS complexes was developed in order to create an automatic cardiac beat classifier in real time. After exhaustive analysis, four features extracted from the QRS complex in the time domain were selected as the ones presenting the best results: width, total sum of the areas under the positive and negative curves, total sum of the absolute values of sample variations and total amplitude. Preliminary studies indicated these features follow a normal distribution, allowing the use of the Mahalanobis distance as their classification criterion. After an initial learning period, the algorithm extracts the four features from every new QRS complex and calculates the Mahalanobis distance between its feature set and the centroids of all existing classes to determine the class in which the new QRS belongs to. If a predefined distance is surpassed, a new class is created Using 44 records from the MIT-BIH we have obtained 90,74% of sensitivity, 96,55% of positive predictivity and 0.242% of false positives.","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"1 1","pages":"201-204"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIC.2002.1166742","citationCount":"63","resultStr":"{\"title\":\"A real time QRS complex classification method using Mahalanobis distance\",\"authors\":\"J. Moraes, M.O. Seixas, F.N. Vilani, E.V. Costa\",\"doi\":\"10.1109/CIC.2002.1166742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unsupervised method to recognize and classify QRS complexes was developed in order to create an automatic cardiac beat classifier in real time. After exhaustive analysis, four features extracted from the QRS complex in the time domain were selected as the ones presenting the best results: width, total sum of the areas under the positive and negative curves, total sum of the absolute values of sample variations and total amplitude. Preliminary studies indicated these features follow a normal distribution, allowing the use of the Mahalanobis distance as their classification criterion. After an initial learning period, the algorithm extracts the four features from every new QRS complex and calculates the Mahalanobis distance between its feature set and the centroids of all existing classes to determine the class in which the new QRS belongs to. If a predefined distance is surpassed, a new class is created Using 44 records from the MIT-BIH we have obtained 90,74% of sensitivity, 96,55% of positive predictivity and 0.242% of false positives.\",\"PeriodicalId\":80984,\"journal\":{\"name\":\"Computers in cardiology\",\"volume\":\"1 1\",\"pages\":\"201-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CIC.2002.1166742\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2002.1166742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2002.1166742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

为了建立实时自动心跳分类器,提出了一种无监督的QRS复合体识别和分类方法。经过详尽的分析,从QRS复合体提取的时域特征中,选择宽度、正负曲线下面积之和、样本变化绝对值之和和总幅值四个特征作为效果最好的特征。初步研究表明,这些特征遵循正态分布,允许使用马氏距离作为它们的分类标准。经过一段初始学习期后,算法从每个新的QRS复合体中提取出四个特征,并计算其特征集与所有现有类的质心之间的马氏距离,从而确定新的QRS属于哪个类。如果超过预定义的距离,则创建一个新的类。使用来自MIT-BIH的44条记录,我们获得了9074%的灵敏度,96,55%的阳性预测和0.242%的假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real time QRS complex classification method using Mahalanobis distance
An unsupervised method to recognize and classify QRS complexes was developed in order to create an automatic cardiac beat classifier in real time. After exhaustive analysis, four features extracted from the QRS complex in the time domain were selected as the ones presenting the best results: width, total sum of the areas under the positive and negative curves, total sum of the absolute values of sample variations and total amplitude. Preliminary studies indicated these features follow a normal distribution, allowing the use of the Mahalanobis distance as their classification criterion. After an initial learning period, the algorithm extracts the four features from every new QRS complex and calculates the Mahalanobis distance between its feature set and the centroids of all existing classes to determine the class in which the new QRS belongs to. If a predefined distance is surpassed, a new class is created Using 44 records from the MIT-BIH we have obtained 90,74% of sensitivity, 96,55% of positive predictivity and 0.242% of false positives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically-Induced Spatial Dispersion of Repolarization and the Development of VF in an Animal Model of Sudden Death. An Anisotropic Fluid-Solid Model of the Mouse Heart. Dynamic Cardiovagal Response to Motion Sickness: A Point-Process Heart Rate Variability Study. The Effect of Signal Quality on Six Cardiac Output Estimators. Predicting Acute Hypotensive Episodes: The 10th Annual PhysioNet/Computers in Cardiology Challenge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1