{"title":"组织表面以下离散深度心脏光学成像定位的计算机建模研究","authors":"V. Ramshesh, J.H. Dumas, S. Knisley","doi":"10.1109/CIC.2002.1166772","DOIUrl":null,"url":null,"abstract":"Depth and radius of the region interrogated by cardiac optical mapping with a laser beam depend on photon travel inside the heart. It would be useful to limit range of depth and radius interrogated. Here the effects of a condensing lens to concentrate laser light at a target depth in the heart was modeled Monte Carlo computer simulations that incorporated a 0.55 NA lens in air and absorption and scattering of 488 nm laser light in 3-d cardiac tissue indicated the distribution of excitation light fluence. A subsequent computer simulation incorporating absorption and scattering of transmembrane voltage-sensitive fluorescence (669 nm) indicated locations in tissue from which fluorescence photons exiting the tissue surface originated The results indicate the heart can be interrogated at a discrete depth below the surface of myocardium with a condensing lens, although resolution is limited This may be applicable to laser scanner systems used for cardiac optical mapping.","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"1 1","pages":"317-319"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIC.2002.1166772","citationCount":"0","resultStr":"{\"title\":\"A computer modeling study of the localization of cardiac optical mapping at discrete depths below the tissue surface\",\"authors\":\"V. Ramshesh, J.H. Dumas, S. Knisley\",\"doi\":\"10.1109/CIC.2002.1166772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth and radius of the region interrogated by cardiac optical mapping with a laser beam depend on photon travel inside the heart. It would be useful to limit range of depth and radius interrogated. Here the effects of a condensing lens to concentrate laser light at a target depth in the heart was modeled Monte Carlo computer simulations that incorporated a 0.55 NA lens in air and absorption and scattering of 488 nm laser light in 3-d cardiac tissue indicated the distribution of excitation light fluence. A subsequent computer simulation incorporating absorption and scattering of transmembrane voltage-sensitive fluorescence (669 nm) indicated locations in tissue from which fluorescence photons exiting the tissue surface originated The results indicate the heart can be interrogated at a discrete depth below the surface of myocardium with a condensing lens, although resolution is limited This may be applicable to laser scanner systems used for cardiac optical mapping.\",\"PeriodicalId\":80984,\"journal\":{\"name\":\"Computers in cardiology\",\"volume\":\"1 1\",\"pages\":\"317-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CIC.2002.1166772\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2002.1166772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2002.1166772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A computer modeling study of the localization of cardiac optical mapping at discrete depths below the tissue surface
Depth and radius of the region interrogated by cardiac optical mapping with a laser beam depend on photon travel inside the heart. It would be useful to limit range of depth and radius interrogated. Here the effects of a condensing lens to concentrate laser light at a target depth in the heart was modeled Monte Carlo computer simulations that incorporated a 0.55 NA lens in air and absorption and scattering of 488 nm laser light in 3-d cardiac tissue indicated the distribution of excitation light fluence. A subsequent computer simulation incorporating absorption and scattering of transmembrane voltage-sensitive fluorescence (669 nm) indicated locations in tissue from which fluorescence photons exiting the tissue surface originated The results indicate the heart can be interrogated at a discrete depth below the surface of myocardium with a condensing lens, although resolution is limited This may be applicable to laser scanner systems used for cardiac optical mapping.