{"title":"SIR疾病非性和性联合传播途径的数学模型","authors":"Joel C. Miller","doi":"10.1101/087189","DOIUrl":null,"url":null,"abstract":"The emergence of diseases such as Zika and Ebola has highlighted the need to understand the role of sexual transmission in the spread of diseases with a primarily non-sexual transmission route. In this paper we develop a number of low-dimensional models which are appropriate for a range of assumptions for how a disease will spread if it has sexual transmission through a sexual contact network combined with some other transmission mechanism, such as direct contact or vectors. The equations derived provide exact predictions for the dynamics of the corresponding simulations in the large population limit.","PeriodicalId":64814,"journal":{"name":"传染病建模(英文)","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes\",\"authors\":\"Joel C. Miller\",\"doi\":\"10.1101/087189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of diseases such as Zika and Ebola has highlighted the need to understand the role of sexual transmission in the spread of diseases with a primarily non-sexual transmission route. In this paper we develop a number of low-dimensional models which are appropriate for a range of assumptions for how a disease will spread if it has sexual transmission through a sexual contact network combined with some other transmission mechanism, such as direct contact or vectors. The equations derived provide exact predictions for the dynamics of the corresponding simulations in the large population limit.\",\"PeriodicalId\":64814,\"journal\":{\"name\":\"传染病建模(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2016-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"传染病建模(英文)\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1101/087189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"传染病建模(英文)","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1101/087189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes
The emergence of diseases such as Zika and Ebola has highlighted the need to understand the role of sexual transmission in the spread of diseases with a primarily non-sexual transmission route. In this paper we develop a number of low-dimensional models which are appropriate for a range of assumptions for how a disease will spread if it has sexual transmission through a sexual contact network combined with some other transmission mechanism, such as direct contact or vectors. The equations derived provide exact predictions for the dynamics of the corresponding simulations in the large population limit.