移动网络中数字孪生支持的联邦学习:从通信辅助传感的角度

IF 13.8 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Selected Areas in Communications Pub Date : 2023-10-01 DOI:10.1109/jsac.2023.3310082
Junsheng Mu, Wenjia Ouyang, Tao Hong, Weijie Yuan, Yuanhao Cui, Zexuan Jing
{"title":"移动网络中数字孪生支持的联邦学习:从通信辅助传感的角度","authors":"Junsheng Mu, Wenjia Ouyang, Tao Hong, Weijie Yuan, Yuanhao Cui, Zexuan Jing","doi":"10.1109/jsac.2023.3310082","DOIUrl":null,"url":null,"abstract":"With the continuous evolution of emerging technologies such as mobile network, machine learning (ML), 5G, etc., digital twins (DT) bursts out great potential by its capacity of data analysis, data tracking, data prediction, etc, building a bridge between the physical and information world. Meanwhile, mobile network is moving towards data-driven paradigm, the issue of data privacy and data security seem to be a bottleneck. As a result, federated learning (FL) and mobile network are deeply converging. However, the mobile network is time-varying and the parameters of FL-empowered mobile network is huge and continue to increase with exponential growth of wireless terminals, result in the failure of traditional modeling. In the mobile networks, DT is conducive to prototyping, testing, and optimization, enabling mobile networks to be modelled more efficiently in a virtual environment and thus providing guidance for practical application. To this end, a communication-assisted sensing scenario is considered in this paper with FL in DT-empowered mobile networks. More specifically, two communication-assisted sensing architectures are proposed to improve communication efficiency of mobile network, namely, centralized architecture of federated transfer learning (FTL) and decentralized architecture of FTL. For centralized architecture of FTL, feature extraction of sensing information is conducted by FL between partial nodes and central server while the remaining nodes are used to train the fully connected layers at the central server. Considering data safety during the communication between sensing nodes, a decentralized architecture is designed based on FTL and Blockchain, where the feature extraction module is obtained by the fusion of sharing model (by Blockchain) and local model. The performance of proposed schemes is evaluated and demonstrated by the simulations.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"25 1","pages":"3230-3241"},"PeriodicalIF":13.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Digital Twin-enabled Federated Learning in Mobile Networks: From the Perspective of Communication-assisted Sensing\",\"authors\":\"Junsheng Mu, Wenjia Ouyang, Tao Hong, Weijie Yuan, Yuanhao Cui, Zexuan Jing\",\"doi\":\"10.1109/jsac.2023.3310082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous evolution of emerging technologies such as mobile network, machine learning (ML), 5G, etc., digital twins (DT) bursts out great potential by its capacity of data analysis, data tracking, data prediction, etc, building a bridge between the physical and information world. Meanwhile, mobile network is moving towards data-driven paradigm, the issue of data privacy and data security seem to be a bottleneck. As a result, federated learning (FL) and mobile network are deeply converging. However, the mobile network is time-varying and the parameters of FL-empowered mobile network is huge and continue to increase with exponential growth of wireless terminals, result in the failure of traditional modeling. In the mobile networks, DT is conducive to prototyping, testing, and optimization, enabling mobile networks to be modelled more efficiently in a virtual environment and thus providing guidance for practical application. To this end, a communication-assisted sensing scenario is considered in this paper with FL in DT-empowered mobile networks. More specifically, two communication-assisted sensing architectures are proposed to improve communication efficiency of mobile network, namely, centralized architecture of federated transfer learning (FTL) and decentralized architecture of FTL. For centralized architecture of FTL, feature extraction of sensing information is conducted by FL between partial nodes and central server while the remaining nodes are used to train the fully connected layers at the central server. Considering data safety during the communication between sensing nodes, a decentralized architecture is designed based on FTL and Blockchain, where the feature extraction module is obtained by the fusion of sharing model (by Blockchain) and local model. The performance of proposed schemes is evaluated and demonstrated by the simulations.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"25 1\",\"pages\":\"3230-3241\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/jsac.2023.3310082\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/jsac.2023.3310082","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Twin-enabled Federated Learning in Mobile Networks: From the Perspective of Communication-assisted Sensing
With the continuous evolution of emerging technologies such as mobile network, machine learning (ML), 5G, etc., digital twins (DT) bursts out great potential by its capacity of data analysis, data tracking, data prediction, etc, building a bridge between the physical and information world. Meanwhile, mobile network is moving towards data-driven paradigm, the issue of data privacy and data security seem to be a bottleneck. As a result, federated learning (FL) and mobile network are deeply converging. However, the mobile network is time-varying and the parameters of FL-empowered mobile network is huge and continue to increase with exponential growth of wireless terminals, result in the failure of traditional modeling. In the mobile networks, DT is conducive to prototyping, testing, and optimization, enabling mobile networks to be modelled more efficiently in a virtual environment and thus providing guidance for practical application. To this end, a communication-assisted sensing scenario is considered in this paper with FL in DT-empowered mobile networks. More specifically, two communication-assisted sensing architectures are proposed to improve communication efficiency of mobile network, namely, centralized architecture of federated transfer learning (FTL) and decentralized architecture of FTL. For centralized architecture of FTL, feature extraction of sensing information is conducted by FL between partial nodes and central server while the remaining nodes are used to train the fully connected layers at the central server. Considering data safety during the communication between sensing nodes, a decentralized architecture is designed based on FTL and Blockchain, where the feature extraction module is obtained by the fusion of sharing model (by Blockchain) and local model. The performance of proposed schemes is evaluated and demonstrated by the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
30.00
自引率
4.30%
发文量
234
审稿时长
6 months
期刊介绍: The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference. The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.
期刊最新文献
IEEE Communications Society Information Corrections to “Coverage Rate Analysis for Integrated Sensing and Communication Networks” Resource Allocation for Adaptive Beam Alignment in UAV-assisted Integrated Sensing and Communication Networks Joint Optimization of User Association, Power Control, and Dynamic Spectrum Sharing for Integrated Aerial-Terrestrial Network Quantum-Enhanced DRL Optimization for DoA Estimation and Task Offloading in ISAC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1