{"title":"从建筑到智能建筑——传感和驱动以提高能源效率","authors":"Thomas Weng, Yuvraj Agarwal","doi":"10.1109/MDT.2012.2211855","DOIUrl":null,"url":null,"abstract":"A holistic approach to reducing the energy footprint of large commercial buildings is proposed. A detailed energy use breakdown within a modern building is presented, leading to the key insight that, in addition to the HVAC system, the energy used by miscellaneous plug loads which include IT equipment must also be addressed. An actuation framework is proposed to control plug-loads and the HVAC system for energy savings.","PeriodicalId":50392,"journal":{"name":"IEEE Design & Test of Computers","volume":"29 1","pages":"36-44"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MDT.2012.2211855","citationCount":"142","resultStr":"{\"title\":\"From Buildings to Smart Buildings—Sensing and Actuation to Improve Energy Efficiency\",\"authors\":\"Thomas Weng, Yuvraj Agarwal\",\"doi\":\"10.1109/MDT.2012.2211855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A holistic approach to reducing the energy footprint of large commercial buildings is proposed. A detailed energy use breakdown within a modern building is presented, leading to the key insight that, in addition to the HVAC system, the energy used by miscellaneous plug loads which include IT equipment must also be addressed. An actuation framework is proposed to control plug-loads and the HVAC system for energy savings.\",\"PeriodicalId\":50392,\"journal\":{\"name\":\"IEEE Design & Test of Computers\",\"volume\":\"29 1\",\"pages\":\"36-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/MDT.2012.2211855\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Design & Test of Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDT.2012.2211855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Design & Test of Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDT.2012.2211855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Buildings to Smart Buildings—Sensing and Actuation to Improve Energy Efficiency
A holistic approach to reducing the energy footprint of large commercial buildings is proposed. A detailed energy use breakdown within a modern building is presented, leading to the key insight that, in addition to the HVAC system, the energy used by miscellaneous plug loads which include IT equipment must also be addressed. An actuation framework is proposed to control plug-loads and the HVAC system for energy savings.