面向多卫星协同观测的机载信息融合:综述、挑战和展望

IF 16.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS IEEE Geoscience and Remote Sensing Magazine Pub Date : 2023-06-01 DOI:10.1109/MGRS.2023.3274301
Gui Gao, Libo Yao, Wenfeng Li, Linlin Zhang, Maolin Zhang
{"title":"面向多卫星协同观测的机载信息融合:综述、挑战和展望","authors":"Gui Gao, Libo Yao, Wenfeng Li, Linlin Zhang, Maolin Zhang","doi":"10.1109/MGRS.2023.3274301","DOIUrl":null,"url":null,"abstract":"Onboard information fusion for multisatellites, which is based on spatial computing mode, can improve the satellites’ capability, such as the spatial–temporal coverage, detection accuracy, recognition confidence, position precision, and prediction precision for disaster monitoring, maritime surveillance, and other emergent or continuous persistent observing situations. First, we analyze the necessity of onboard information fusion. Next, the recent onboard processing developments are summarized and the existing problems are discussed. Furthermore, the key technologies and concepts of onboard information fusion are summarized in the fields of feature representation, association, feature-level fusion, spatial computing architecture, and other issues. Finally, the future developments of onboard information fusion are investigated and discussed.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":16.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Onboard Information Fusion for Multisatellite Collaborative Observation: Summary, challenges, and perspectives\",\"authors\":\"Gui Gao, Libo Yao, Wenfeng Li, Linlin Zhang, Maolin Zhang\",\"doi\":\"10.1109/MGRS.2023.3274301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Onboard information fusion for multisatellites, which is based on spatial computing mode, can improve the satellites’ capability, such as the spatial–temporal coverage, detection accuracy, recognition confidence, position precision, and prediction precision for disaster monitoring, maritime surveillance, and other emergent or continuous persistent observing situations. First, we analyze the necessity of onboard information fusion. Next, the recent onboard processing developments are summarized and the existing problems are discussed. Furthermore, the key technologies and concepts of onboard information fusion are summarized in the fields of feature representation, association, feature-level fusion, spatial computing architecture, and other issues. Finally, the future developments of onboard information fusion are investigated and discussed.\",\"PeriodicalId\":48660,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1109/MGRS.2023.3274301\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/MGRS.2023.3274301","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

基于空间计算模式的多星机载信息融合可以提高卫星的时空覆盖能力、探测精度、识别置信度、定位精度和预测精度,用于灾害监测、海上监视和其他紧急或连续持续观测情况。首先,分析了机载信息融合的必要性。其次,总结了近年来机载加工技术的发展,并对存在的问题进行了讨论。从特征表示、关联、特征级融合、空间计算架构等方面总结了机载信息融合的关键技术和概念。最后,对机载信息融合的未来发展进行了展望和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Onboard Information Fusion for Multisatellite Collaborative Observation: Summary, challenges, and perspectives
Onboard information fusion for multisatellites, which is based on spatial computing mode, can improve the satellites’ capability, such as the spatial–temporal coverage, detection accuracy, recognition confidence, position precision, and prediction precision for disaster monitoring, maritime surveillance, and other emergent or continuous persistent observing situations. First, we analyze the necessity of onboard information fusion. Next, the recent onboard processing developments are summarized and the existing problems are discussed. Furthermore, the key technologies and concepts of onboard information fusion are summarized in the fields of feature representation, association, feature-level fusion, spatial computing architecture, and other issues. Finally, the future developments of onboard information fusion are investigated and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Magazine
IEEE Geoscience and Remote Sensing Magazine Computer Science-General Computer Science
CiteScore
20.50
自引率
2.70%
发文量
58
期刊介绍: The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.
期刊最新文献
Spatiotemporal Big Data Empower Community Modeling, Monitoring, Evaluation, and Optimization for Sustainable Community Development: A review of challenges and opportunities Opening the Black Box: A systematic review on explainable artificial intelligence in remote sensing LuTan-1: An innovative L-band spaceborne bistatic interferometric synthetic aperture radar mission Better, Not Just More: Data-centric machine learning for Earth observation EarthNets: Empowering artificial intelligence for Earth observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1