{"title":"基于稀疏编码的新型关键点检测器","authors":"Thanh Hong-Phuoc, Ling Guan","doi":"10.1109/TIP.2019.2934891","DOIUrl":null,"url":null,"abstract":"<p><p>Most popular hand-crafted key-point detectors such as Harris corner, MSER, SIFT, SURF rely on some specific pre-designed structures for detection of corners, blobs, or junctions in an image. The very nature of pre-designed structures can be considered a source of inflexibility for these detectors in different contexts. Additionally, the performance of these detectors is also highly affected by non-uniform change in illumination. To the best of our knowledge, while there are some previous works addressing one of the two aforementioned problems, there currently lacks an efficient method to solve both simultaneously. In this paper, we propose a novel Sparse Coding based Key-point detector (SCK) which is fully invariant to affine intensity change and independent of any particular structure. The proposed detector locates a key-point in an image, based on a complexity measure calculated from the block surrounding its position. A strength measure is also proposed for comparing and selecting the detected key-points when the maximum number of key-points is limited. In this paper, the desirable characteristics of the proposed detector are theoretically confirmed. Experimental results on three public datasets also show that the proposed detector achieves significantly high performance in terms of repeatability and matching score.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Key-point Detector based on Sparse Coding.\",\"authors\":\"Thanh Hong-Phuoc, Ling Guan\",\"doi\":\"10.1109/TIP.2019.2934891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most popular hand-crafted key-point detectors such as Harris corner, MSER, SIFT, SURF rely on some specific pre-designed structures for detection of corners, blobs, or junctions in an image. The very nature of pre-designed structures can be considered a source of inflexibility for these detectors in different contexts. Additionally, the performance of these detectors is also highly affected by non-uniform change in illumination. To the best of our knowledge, while there are some previous works addressing one of the two aforementioned problems, there currently lacks an efficient method to solve both simultaneously. In this paper, we propose a novel Sparse Coding based Key-point detector (SCK) which is fully invariant to affine intensity change and independent of any particular structure. The proposed detector locates a key-point in an image, based on a complexity measure calculated from the block surrounding its position. A strength measure is also proposed for comparing and selecting the detected key-points when the maximum number of key-points is limited. In this paper, the desirable characteristics of the proposed detector are theoretically confirmed. Experimental results on three public datasets also show that the proposed detector achieves significantly high performance in terms of repeatability and matching score.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2934891\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2934891","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Novel Key-point Detector based on Sparse Coding.
Most popular hand-crafted key-point detectors such as Harris corner, MSER, SIFT, SURF rely on some specific pre-designed structures for detection of corners, blobs, or junctions in an image. The very nature of pre-designed structures can be considered a source of inflexibility for these detectors in different contexts. Additionally, the performance of these detectors is also highly affected by non-uniform change in illumination. To the best of our knowledge, while there are some previous works addressing one of the two aforementioned problems, there currently lacks an efficient method to solve both simultaneously. In this paper, we propose a novel Sparse Coding based Key-point detector (SCK) which is fully invariant to affine intensity change and independent of any particular structure. The proposed detector locates a key-point in an image, based on a complexity measure calculated from the block surrounding its position. A strength measure is also proposed for comparing and selecting the detected key-points when the maximum number of key-points is limited. In this paper, the desirable characteristics of the proposed detector are theoretically confirmed. Experimental results on three public datasets also show that the proposed detector achieves significantly high performance in terms of repeatability and matching score.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.