{"title":"通过渐近定位拟合和多尺度上下文编码实现高效的单级行人检测器","authors":"Wei Liu, Shengcai Liao, Weidong Hu","doi":"10.1109/TIP.2019.2938877","DOIUrl":null,"url":null,"abstract":"<p><p>Though Faster R-CNN based two-stage detectors have witnessed significant boost in pedestrian detection accuracy, they are still slow for practical applications. One solution is to simplify this working flow as a single-stage detector. However, current single-stage detectors (e.g. SSD) have not presented competitive accuracy on common pedestrian detection benchmarks. Accordingly, a structurally simple but effective module called Asymptotic Localization Fitting (ALF) is proposed, which stacks a series of predictors to directly evolve the default anchor boxes of SSD step by step to improve detection results. Additionally, combining the advantages from residual learning and multi-scale context encoding, a bottleneck block is proposed to enhance the predictors' discriminative power. On top of the above designs, an efficient single-stage detection architecture is designed, resulting in an attractive pedestrian detector in both accuracy and speed. A comprehensive set of experiments on two of the largest pedestrian detection datasets (i.e. CityPersons and Caltech) demonstrate the superiority of the proposed method, comparing to the state of the arts on both the benchmarks.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Single-Stage Pedestrian Detector by Asymptotic Localization Fitting and Multi-Scale Context Encoding.\",\"authors\":\"Wei Liu, Shengcai Liao, Weidong Hu\",\"doi\":\"10.1109/TIP.2019.2938877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Though Faster R-CNN based two-stage detectors have witnessed significant boost in pedestrian detection accuracy, they are still slow for practical applications. One solution is to simplify this working flow as a single-stage detector. However, current single-stage detectors (e.g. SSD) have not presented competitive accuracy on common pedestrian detection benchmarks. Accordingly, a structurally simple but effective module called Asymptotic Localization Fitting (ALF) is proposed, which stacks a series of predictors to directly evolve the default anchor boxes of SSD step by step to improve detection results. Additionally, combining the advantages from residual learning and multi-scale context encoding, a bottleneck block is proposed to enhance the predictors' discriminative power. On top of the above designs, an efficient single-stage detection architecture is designed, resulting in an attractive pedestrian detector in both accuracy and speed. A comprehensive set of experiments on two of the largest pedestrian detection datasets (i.e. CityPersons and Caltech) demonstrate the superiority of the proposed method, comparing to the state of the arts on both the benchmarks.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2938877\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2938877","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficient Single-Stage Pedestrian Detector by Asymptotic Localization Fitting and Multi-Scale Context Encoding.
Though Faster R-CNN based two-stage detectors have witnessed significant boost in pedestrian detection accuracy, they are still slow for practical applications. One solution is to simplify this working flow as a single-stage detector. However, current single-stage detectors (e.g. SSD) have not presented competitive accuracy on common pedestrian detection benchmarks. Accordingly, a structurally simple but effective module called Asymptotic Localization Fitting (ALF) is proposed, which stacks a series of predictors to directly evolve the default anchor boxes of SSD step by step to improve detection results. Additionally, combining the advantages from residual learning and multi-scale context encoding, a bottleneck block is proposed to enhance the predictors' discriminative power. On top of the above designs, an efficient single-stage detection architecture is designed, resulting in an attractive pedestrian detector in both accuracy and speed. A comprehensive set of experiments on two of the largest pedestrian detection datasets (i.e. CityPersons and Caltech) demonstrate the superiority of the proposed method, comparing to the state of the arts on both the benchmarks.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.