通过递归约束网络实现弱监督焦点区域检测

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-09-25 DOI:10.1109/TIP.2019.2942505
Wenda Zhao, Xueqing Hou, Xiaobing Yu, You He, Huchuan Lu
{"title":"通过递归约束网络实现弱监督焦点区域检测","authors":"Wenda Zhao, Xueqing Hou, Xiaobing Yu, You He, Huchuan Lu","doi":"10.1109/TIP.2019.2942505","DOIUrl":null,"url":null,"abstract":"<p><p>Recent state-of-the-art methods on focus region detection (FRD) rely on deep convolutional networks trained with costly pixel-level annotations. In this study, we propose a FRD method that achieves competitive accuracies but only uses easily obtained bounding box annotations. Box-level tags provide important cues of focus regions but lose the boundary delineation of the transition area. A recurrent constraint network (RCN) is introduced for this challenge. In our static training, RCN is jointly trained with a fully convolutional network (FCN) through box-level supervision. The RCN can generate a detailed focus map to locate the boundary of the transition area effectively. In our dynamic training, we iterate between fine-tuning FCN and RCN with the generated pixel-level tags and generate finer new pixel-level tags. To boost the performance further, a guided conditional random field is developed to improve the quality of the generated pixel-level tags. To promote further study of the weakly supervised FRD methods, we construct a new dataset called FocusBox, which consists of 5000 challenging images with bounding box-level labels. Experimental results on existing datasets demonstrate that our method not only yields comparable results than fully supervised counterparts but also achieves a faster speed.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards weakly-supervised focus region detection via recurrent constraint network.\",\"authors\":\"Wenda Zhao, Xueqing Hou, Xiaobing Yu, You He, Huchuan Lu\",\"doi\":\"10.1109/TIP.2019.2942505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent state-of-the-art methods on focus region detection (FRD) rely on deep convolutional networks trained with costly pixel-level annotations. In this study, we propose a FRD method that achieves competitive accuracies but only uses easily obtained bounding box annotations. Box-level tags provide important cues of focus regions but lose the boundary delineation of the transition area. A recurrent constraint network (RCN) is introduced for this challenge. In our static training, RCN is jointly trained with a fully convolutional network (FCN) through box-level supervision. The RCN can generate a detailed focus map to locate the boundary of the transition area effectively. In our dynamic training, we iterate between fine-tuning FCN and RCN with the generated pixel-level tags and generate finer new pixel-level tags. To boost the performance further, a guided conditional random field is developed to improve the quality of the generated pixel-level tags. To promote further study of the weakly supervised FRD methods, we construct a new dataset called FocusBox, which consists of 5000 challenging images with bounding box-level labels. Experimental results on existing datasets demonstrate that our method not only yields comparable results than fully supervised counterparts but also achieves a faster speed.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2942505\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2942505","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近期最先进的焦点区域检测(FRD)方法依赖于使用昂贵的像素级注释训练的深度卷积网络。在本研究中,我们提出了一种 FRD 方法,该方法可实现具有竞争力的精确度,但仅使用容易获得的边界框注释。方框级标记提供了焦点区域的重要线索,但却失去了过渡区域的边界划分。针对这一挑战,我们引入了递归约束网络(RCN)。在我们的静态训练中,RCN 通过盒级监督与全卷积网络(FCN)联合训练。RCN 可以生成详细的焦点图,从而有效定位过渡区域的边界。在动态训练中,我们利用生成的像素级标签在微调 FCN 和 RCN 之间进行迭代,生成更精细的新像素级标签。为了进一步提高性能,我们开发了一种引导条件随机场来提高生成的像素级标签的质量。为了促进对弱监督 FRD 方法的进一步研究,我们构建了一个名为 FocusBox 的新数据集,该数据集由 5000 张具有边界框级标签的挑战性图像组成。在现有数据集上的实验结果表明,我们的方法不仅能获得与全监督方法相当的结果,而且速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards weakly-supervised focus region detection via recurrent constraint network.

Recent state-of-the-art methods on focus region detection (FRD) rely on deep convolutional networks trained with costly pixel-level annotations. In this study, we propose a FRD method that achieves competitive accuracies but only uses easily obtained bounding box annotations. Box-level tags provide important cues of focus regions but lose the boundary delineation of the transition area. A recurrent constraint network (RCN) is introduced for this challenge. In our static training, RCN is jointly trained with a fully convolutional network (FCN) through box-level supervision. The RCN can generate a detailed focus map to locate the boundary of the transition area effectively. In our dynamic training, we iterate between fine-tuning FCN and RCN with the generated pixel-level tags and generate finer new pixel-level tags. To boost the performance further, a guided conditional random field is developed to improve the quality of the generated pixel-level tags. To promote further study of the weakly supervised FRD methods, we construct a new dataset called FocusBox, which consists of 5000 challenging images with bounding box-level labels. Experimental results on existing datasets demonstrate that our method not only yields comparable results than fully supervised counterparts but also achieves a faster speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
MWFormer: Multi-Weather Image Restoration Using Degradation-Aware Transformers ESOD: Efficient Small Object Detection on High-Resolution Images GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1