利用块稀疏性实现高光谱克朗克尔压缩传感:基于张量的贝叶斯方法

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-10-07 DOI:10.1109/TIP.2019.2944722
Rongqiang Zhao, Qiang Wang, Jun Fu, Luquan Ren
{"title":"利用块稀疏性实现高光谱克朗克尔压缩传感:基于张量的贝叶斯方法","authors":"Rongqiang Zhao, Qiang Wang, Jun Fu, Luquan Ren","doi":"10.1109/TIP.2019.2944722","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian methods are attracting increasing attention in the field of compressive sensing (CS), as they are applicable to recover signals from random measurements. However, these methods have limited use in many tensor-based cases such as hyperspectral Kronecker compressive sensing (HKCS), because they exploit the sparsity in only one dimension. In this paper, we propose a novel Bayesian model for HKCS in an attempt to overcome the above limitation. The model exploits multi-dimensional block-sparsity such that the information redundancies in all dimensions are eliminated. Laplace prior distributions are employed for sparse coefficients in each dimension, and their coupling is consistent with the multi-dimensional block-sparsity model. Based on the proposed model, we develop a tensor-based Bayesian reconstruction algorithm, which decouples the hyperparameters for each dimension via a low-complexity technique. Experimental results demonstrate that the proposed method is able to provide more accurate reconstruction than existing Bayesian methods at a satisfactory speed. Additionally, the proposed method can not only be used for HKCS, it also has the potential to be extended to other multi-dimensional CS applications and to multi-dimensional block-sparse-based data recovery.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Block-sparsity for Hyperspectral Kronecker Compressive Sensing: a Tensor-based Bayesian Method.\",\"authors\":\"Rongqiang Zhao, Qiang Wang, Jun Fu, Luquan Ren\",\"doi\":\"10.1109/TIP.2019.2944722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bayesian methods are attracting increasing attention in the field of compressive sensing (CS), as they are applicable to recover signals from random measurements. However, these methods have limited use in many tensor-based cases such as hyperspectral Kronecker compressive sensing (HKCS), because they exploit the sparsity in only one dimension. In this paper, we propose a novel Bayesian model for HKCS in an attempt to overcome the above limitation. The model exploits multi-dimensional block-sparsity such that the information redundancies in all dimensions are eliminated. Laplace prior distributions are employed for sparse coefficients in each dimension, and their coupling is consistent with the multi-dimensional block-sparsity model. Based on the proposed model, we develop a tensor-based Bayesian reconstruction algorithm, which decouples the hyperparameters for each dimension via a low-complexity technique. Experimental results demonstrate that the proposed method is able to provide more accurate reconstruction than existing Bayesian methods at a satisfactory speed. Additionally, the proposed method can not only be used for HKCS, it also has the potential to be extended to other multi-dimensional CS applications and to multi-dimensional block-sparse-based data recovery.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2944722\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2944722","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯方法适用于从随机测量中恢复信号,因此在压缩传感(CS)领域受到越来越多的关注。然而,这些方法在许多基于张量的情况下(如高光谱 Kronecker 压缩传感(HKCS))使用有限,因为它们只利用了一个维度的稀疏性。在本文中,我们提出了一种用于 HKCS 的新型贝叶斯模型,试图克服上述局限性。该模型利用了多维块稀疏性,从而消除了所有维度的信息冗余。每个维度的稀疏系数都采用了拉普拉斯先验分布,它们之间的耦合与多维块稀疏性模型是一致的。基于所提出的模型,我们开发了一种基于张量的贝叶斯重建算法,该算法通过一种低复杂度技术解耦了每个维度的超参数。实验结果表明,与现有的贝叶斯方法相比,所提出的方法能以令人满意的速度提供更精确的重建。此外,所提出的方法不仅可用于香港计算机辅助分析,还具有扩展到其他多维计算机辅助分析应用和基于块稀疏的多维数据恢复的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Block-sparsity for Hyperspectral Kronecker Compressive Sensing: a Tensor-based Bayesian Method.

Bayesian methods are attracting increasing attention in the field of compressive sensing (CS), as they are applicable to recover signals from random measurements. However, these methods have limited use in many tensor-based cases such as hyperspectral Kronecker compressive sensing (HKCS), because they exploit the sparsity in only one dimension. In this paper, we propose a novel Bayesian model for HKCS in an attempt to overcome the above limitation. The model exploits multi-dimensional block-sparsity such that the information redundancies in all dimensions are eliminated. Laplace prior distributions are employed for sparse coefficients in each dimension, and their coupling is consistent with the multi-dimensional block-sparsity model. Based on the proposed model, we develop a tensor-based Bayesian reconstruction algorithm, which decouples the hyperparameters for each dimension via a low-complexity technique. Experimental results demonstrate that the proposed method is able to provide more accurate reconstruction than existing Bayesian methods at a satisfactory speed. Additionally, the proposed method can not only be used for HKCS, it also has the potential to be extended to other multi-dimensional CS applications and to multi-dimensional block-sparse-based data recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation RegSeg: An End-to-End Network for Multimodal RGB-Thermal Registration and Semantic Segmentation Salient Object Detection in RGB-D Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1