{"title":"在实时第一人称射击电脑游戏中创建自主自适应代理","authors":"D. Wang, A. Tan","doi":"10.1109/TCIAIG.2014.2336702","DOIUrl":null,"url":null,"abstract":"Games are good test-beds to evaluate AI methodologies. In recent years, there has been a vast amount of research dealing with real-time computer games other than the traditional board games or card games. This paper illustrates how we create agents by employing FALCON, a self-organizing neural network that performs reinforcement learning, to play a well-known first-person shooter computer game called Unreal Tournament. Rewards used for learning are either obtained from the game environment or estimated using the temporal difference learning scheme. In this way, the agents are able to acquire proper strategies and discover the effectiveness of different weapons without any guidance or intervention. The experimental results show that our agents learn effectively and appropriately from scratch while playing the game in real-time. Moreover, with the previously learned knowledge retained, our agent is able to adapt to a different opponent in a different map within a relatively short period of time.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"7 1","pages":"123-138"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2336702","citationCount":"44","resultStr":"{\"title\":\"Creating Autonomous Adaptive Agents in a Real-Time First-Person Shooter Computer Game\",\"authors\":\"D. Wang, A. Tan\",\"doi\":\"10.1109/TCIAIG.2014.2336702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Games are good test-beds to evaluate AI methodologies. In recent years, there has been a vast amount of research dealing with real-time computer games other than the traditional board games or card games. This paper illustrates how we create agents by employing FALCON, a self-organizing neural network that performs reinforcement learning, to play a well-known first-person shooter computer game called Unreal Tournament. Rewards used for learning are either obtained from the game environment or estimated using the temporal difference learning scheme. In this way, the agents are able to acquire proper strategies and discover the effectiveness of different weapons without any guidance or intervention. The experimental results show that our agents learn effectively and appropriately from scratch while playing the game in real-time. Moreover, with the previously learned knowledge retained, our agent is able to adapt to a different opponent in a different map within a relatively short period of time.\",\"PeriodicalId\":49192,\"journal\":{\"name\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"volume\":\"7 1\",\"pages\":\"123-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2336702\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCIAIG.2014.2336702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2014.2336702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Creating Autonomous Adaptive Agents in a Real-Time First-Person Shooter Computer Game
Games are good test-beds to evaluate AI methodologies. In recent years, there has been a vast amount of research dealing with real-time computer games other than the traditional board games or card games. This paper illustrates how we create agents by employing FALCON, a self-organizing neural network that performs reinforcement learning, to play a well-known first-person shooter computer game called Unreal Tournament. Rewards used for learning are either obtained from the game environment or estimated using the temporal difference learning scheme. In this way, the agents are able to acquire proper strategies and discover the effectiveness of different weapons without any guidance or intervention. The experimental results show that our agents learn effectively and appropriately from scratch while playing the game in real-time. Moreover, with the previously learned knowledge retained, our agent is able to adapt to a different opponent in a different map within a relatively short period of time.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.