Diego Perez Liebana, Sanaz Mostaghim, Spyridon Samothrakis, S. Lucas
{"title":"实时游戏的多目标蒙特卡罗树搜索","authors":"Diego Perez Liebana, Sanaz Mostaghim, Spyridon Samothrakis, S. Lucas","doi":"10.1109/TCIAIG.2014.2345842","DOIUrl":null,"url":null,"abstract":"Multiobjective optimization has been traditionally a matter of study in domains like engineering or finance, with little impact on games research. However, action-decision based on multiobjective evaluation may be beneficial in order to obtain a high quality level of play. This paper presents a multiobjective Monte Carlo tree search algorithm for planning and control in real-time game domains, those where the time budget to decide the next move to make is close to 40 ms. A comparison is made between the proposed algorithm, a single-objective version of Monte Carlo tree search and a rolling horizon implementation of nondominated sorting evolutionary algorithm II (NSGA-II). Two different benchmarks are employed, deep sea treasure (DST) and the multiobjective physical traveling salesman problem (MO-PTSP). Using the same heuristics on each game, the analysis is focused on how well the algorithms explore the search space. Results show that the algorithm proposed outperforms NSGA-II. Additionally, it is also shown that the algorithm is able to converge to different optimal solutions or the optimal Pareto front (if achieved during search).","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"7 1","pages":"347-360"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2345842","citationCount":"24","resultStr":"{\"title\":\"Multiobjective Monte Carlo Tree Search for Real-Time Games\",\"authors\":\"Diego Perez Liebana, Sanaz Mostaghim, Spyridon Samothrakis, S. Lucas\",\"doi\":\"10.1109/TCIAIG.2014.2345842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiobjective optimization has been traditionally a matter of study in domains like engineering or finance, with little impact on games research. However, action-decision based on multiobjective evaluation may be beneficial in order to obtain a high quality level of play. This paper presents a multiobjective Monte Carlo tree search algorithm for planning and control in real-time game domains, those where the time budget to decide the next move to make is close to 40 ms. A comparison is made between the proposed algorithm, a single-objective version of Monte Carlo tree search and a rolling horizon implementation of nondominated sorting evolutionary algorithm II (NSGA-II). Two different benchmarks are employed, deep sea treasure (DST) and the multiobjective physical traveling salesman problem (MO-PTSP). Using the same heuristics on each game, the analysis is focused on how well the algorithms explore the search space. Results show that the algorithm proposed outperforms NSGA-II. Additionally, it is also shown that the algorithm is able to converge to different optimal solutions or the optimal Pareto front (if achieved during search).\",\"PeriodicalId\":49192,\"journal\":{\"name\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"volume\":\"7 1\",\"pages\":\"347-360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2345842\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCIAIG.2014.2345842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2014.2345842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Multiobjective Monte Carlo Tree Search for Real-Time Games
Multiobjective optimization has been traditionally a matter of study in domains like engineering or finance, with little impact on games research. However, action-decision based on multiobjective evaluation may be beneficial in order to obtain a high quality level of play. This paper presents a multiobjective Monte Carlo tree search algorithm for planning and control in real-time game domains, those where the time budget to decide the next move to make is close to 40 ms. A comparison is made between the proposed algorithm, a single-objective version of Monte Carlo tree search and a rolling horizon implementation of nondominated sorting evolutionary algorithm II (NSGA-II). Two different benchmarks are employed, deep sea treasure (DST) and the multiobjective physical traveling salesman problem (MO-PTSP). Using the same heuristics on each game, the analysis is focused on how well the algorithms explore the search space. Results show that the algorithm proposed outperforms NSGA-II. Additionally, it is also shown that the algorithm is able to converge to different optimal solutions or the optimal Pareto front (if achieved during search).
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.