MCTS-Minimax混合动力车

Hendrik Baier, M. Winands
{"title":"MCTS-Minimax混合动力车","authors":"Hendrik Baier, M. Winands","doi":"10.1109/TCIAIG.2014.2366555","DOIUrl":null,"url":null,"abstract":"Monte Carlo tree search (MCTS) is a sampling-based search algorithm that is state of the art in a variety of games. In many domains, its Monte Carlo rollouts of entire games give it a strategic advantage over traditional depth-limited minimax search with αβ pruning. These rollouts can often detect long-term consequences of moves, freeing the programmer from having to capture these consequences in a heuristic evaluation function. But due to its highly selective tree, MCTS runs a higher risk than full-width minimax search of missing individual moves and falling into traps in tactical situations. This paper proposes MCTS-minimax hybrids that integrate shallow minimax searches into the MCTS framework. Three approaches are outlined, using minimax in the selection/expansion phase, the rollout phase, and the backpropagation phase of MCTS. Without assuming domain knowledge in the form of evaluation functions, these hybrid algorithms are a first step towards combining the strategic strength of MCTS and the tactical strength of minimax. We investigate their effectiveness in the test domains of Connect-4, Breakthrough, Othello, and Catch the Lion, and relate this performance to the tacticality of the domains.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"7 1","pages":"167-179"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2366555","citationCount":"22","resultStr":"{\"title\":\"MCTS-Minimax Hybrids\",\"authors\":\"Hendrik Baier, M. Winands\",\"doi\":\"10.1109/TCIAIG.2014.2366555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monte Carlo tree search (MCTS) is a sampling-based search algorithm that is state of the art in a variety of games. In many domains, its Monte Carlo rollouts of entire games give it a strategic advantage over traditional depth-limited minimax search with αβ pruning. These rollouts can often detect long-term consequences of moves, freeing the programmer from having to capture these consequences in a heuristic evaluation function. But due to its highly selective tree, MCTS runs a higher risk than full-width minimax search of missing individual moves and falling into traps in tactical situations. This paper proposes MCTS-minimax hybrids that integrate shallow minimax searches into the MCTS framework. Three approaches are outlined, using minimax in the selection/expansion phase, the rollout phase, and the backpropagation phase of MCTS. Without assuming domain knowledge in the form of evaluation functions, these hybrid algorithms are a first step towards combining the strategic strength of MCTS and the tactical strength of minimax. We investigate their effectiveness in the test domains of Connect-4, Breakthrough, Othello, and Catch the Lion, and relate this performance to the tacticality of the domains.\",\"PeriodicalId\":49192,\"journal\":{\"name\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"volume\":\"7 1\",\"pages\":\"167-179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2366555\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCIAIG.2014.2366555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2014.2366555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 22

摘要

蒙特卡罗树搜索(MCTS)是一种基于采样的搜索算法,在各种游戏中都是最先进的。在许多领域,它的蒙特卡洛整个游戏的推出给了它一个战略优势比传统的深度限制极大极小搜索与αβ修剪。这些部署通常可以检测移动的长期结果,从而使程序员不必在启发式评估函数中捕获这些结果。但由于它的高度选择性树,MCTS比全宽度极小极大搜索有更高的风险,会丢失单个动作,并在战术情况下陷入陷阱。本文提出了一种将浅极大极小搜索整合到MCTS框架中的MCTS-minimax混合算法。概述了三种方法,即在MCTS的选择/扩展阶段、推出阶段和反向传播阶段使用极小最大值。这些混合算法不以评估函数的形式假设领域知识,是将MCTS的战略强度和极大极小的战术强度相结合的第一步。我们研究了它们在Connect-4、Breakthrough、Othello和Catch the Lion的测试域中的有效性,并将这种性能与这些域的战术性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCTS-Minimax Hybrids
Monte Carlo tree search (MCTS) is a sampling-based search algorithm that is state of the art in a variety of games. In many domains, its Monte Carlo rollouts of entire games give it a strategic advantage over traditional depth-limited minimax search with αβ pruning. These rollouts can often detect long-term consequences of moves, freeing the programmer from having to capture these consequences in a heuristic evaluation function. But due to its highly selective tree, MCTS runs a higher risk than full-width minimax search of missing individual moves and falling into traps in tactical situations. This paper proposes MCTS-minimax hybrids that integrate shallow minimax searches into the MCTS framework. Three approaches are outlined, using minimax in the selection/expansion phase, the rollout phase, and the backpropagation phase of MCTS. Without assuming domain knowledge in the form of evaluation functions, these hybrid algorithms are a first step towards combining the strategic strength of MCTS and the tactical strength of minimax. We investigate their effectiveness in the test domains of Connect-4, Breakthrough, Othello, and Catch the Lion, and relate this performance to the tacticality of the domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Intelligence and AI in Games
IEEE Transactions on Computational Intelligence and AI in Games COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.
期刊最新文献
A User Trust System for Online Games—Part II: A Subjective Logic Approach for Trust Inference Accelerating Board Games Through Hardware/Software Codesign Creating AI Characters for Fighting Games Using Genetic Programming Multiagent Path Finding With Persistence Conflicts Changing Resources Available to Game Playing Agents: Another Relevant Design Factor in Agent Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1