{"title":"思维方式与团队竞赛游戏表现与享受","authors":"Hao Wang, Hao-Tsung Yang, Chuen-Tsai Sun","doi":"10.1109/TCIAIG.2015.2466240","DOIUrl":null,"url":null,"abstract":"Almost all current matchmaking systems for team competition games based on player skill ratings contain algorithms designed to create teams consisting of players at similar skill levels. However, these systems overlook the important factor of playing style. In this paper, we analyze how playing style affects enjoyment in team competition games, using a mix of Sternberg's thinking style theory and individual histories in the form of statistics from previous matches to categorize League of Legend (LoL) players. Data for approximately 64 000 matches involving 185 000 players were taken from the LoLBase website. Match enjoyment was considered low when games lasted for 26 min or less (the earliest possible surrender time). Results from statistical analyses indicate that players with certain playing styles were more likely to enhance both game enjoyment and team strength. We also used a neural network model to test the usefulness of playing style information in predicting match quality. It is our hope that these results will support the establishment of more efficient matchmaking systems.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"7 1","pages":"243-254"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2015.2466240","citationCount":"16","resultStr":"{\"title\":\"Thinking Style and Team Competition Game Performance and Enjoyment\",\"authors\":\"Hao Wang, Hao-Tsung Yang, Chuen-Tsai Sun\",\"doi\":\"10.1109/TCIAIG.2015.2466240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Almost all current matchmaking systems for team competition games based on player skill ratings contain algorithms designed to create teams consisting of players at similar skill levels. However, these systems overlook the important factor of playing style. In this paper, we analyze how playing style affects enjoyment in team competition games, using a mix of Sternberg's thinking style theory and individual histories in the form of statistics from previous matches to categorize League of Legend (LoL) players. Data for approximately 64 000 matches involving 185 000 players were taken from the LoLBase website. Match enjoyment was considered low when games lasted for 26 min or less (the earliest possible surrender time). Results from statistical analyses indicate that players with certain playing styles were more likely to enhance both game enjoyment and team strength. We also used a neural network model to test the usefulness of playing style information in predicting match quality. It is our hope that these results will support the establishment of more efficient matchmaking systems.\",\"PeriodicalId\":49192,\"journal\":{\"name\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"volume\":\"7 1\",\"pages\":\"243-254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCIAIG.2015.2466240\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCIAIG.2015.2466240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2015.2466240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Thinking Style and Team Competition Game Performance and Enjoyment
Almost all current matchmaking systems for team competition games based on player skill ratings contain algorithms designed to create teams consisting of players at similar skill levels. However, these systems overlook the important factor of playing style. In this paper, we analyze how playing style affects enjoyment in team competition games, using a mix of Sternberg's thinking style theory and individual histories in the form of statistics from previous matches to categorize League of Legend (LoL) players. Data for approximately 64 000 matches involving 185 000 players were taken from the LoLBase website. Match enjoyment was considered low when games lasted for 26 min or less (the earliest possible surrender time). Results from statistical analyses indicate that players with certain playing styles were more likely to enhance both game enjoyment and team strength. We also used a neural network model to test the usefulness of playing style information in predicting match quality. It is our hope that these results will support the establishment of more efficient matchmaking systems.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.