基于随机梯度下降的多准则可伸缩图形绘制,$(SGD)^{2}$(SGD)2
IF 4.7 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Visualization and Computer Graphics Pub Date : 2021-12-02 DOI:10.1109/TVCG.2022.3155564
R. Ahmed, Felice De Luca, S. Devkota, S. Kobourov, Mingwei Li

{"title":"基于随机梯度下降的多准则可伸缩图形绘制,$(SGD)^{2}$(SGD)2</","authors":"R. Ahmed, Felice De Luca, S. Devkota, S. Kobourov, Mingwei Li","doi":"10.1109/TVCG.2022.3155564","DOIUrl":null,"url":null,"abstract":"Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq2-3155564.gif\"/></alternatives></inline-formula>, that can handle multiple readability criteria. <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq3-3155564.gif\"/></alternatives></inline-formula> can optimize any criterion that can be described by a differentiable function. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., node resolution, angular resolution, aspect ratio). The approach is scalable and can handle large graphs. A variation of the underlying approach can also be used to optimize many desirable properties in planar graphs, while maintaining planarity. Finally, we provide quantitative and qualitative evidence of the effectiveness of <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq4-3155564.gif\"/></alternatives></inline-formula>: we analyze the interactions between criteria, measure the quality of layouts generated from <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq5-3155564.gif\"/></alternatives></inline-formula> as well as the runtime behavior, and analyze the impact of sample sizes. The source code is available on github and we also provide an interactive demo for small graphs.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"28 1","pages":"2388-2399"},"PeriodicalIF":4.7000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, $(SGD)^{2}$(SGD)2\",\"authors\":\"R. Ahmed, Felice De Luca, S. Devkota, S. Kobourov, Mingwei Li\",\"doi\":\"10.1109/TVCG.2022.3155564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq2-3155564.gif\\\"/></alternatives></inline-formula>, that can handle multiple readability criteria. <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq3-3155564.gif\\\"/></alternatives></inline-formula> can optimize any criterion that can be described by a differentiable function. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., node resolution, angular resolution, aspect ratio). The approach is scalable and can handle large graphs. A variation of the underlying approach can also be used to optimize many desirable properties in planar graphs, while maintaining planarity. Finally, we provide quantitative and qualitative evidence of the effectiveness of <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq4-3155564.gif\\\"/></alternatives></inline-formula>: we analyze the interactions between criteria, measure the quality of layouts generated from <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq5-3155564.gif\\\"/></alternatives></inline-formula> as well as the runtime behavior, and analyze the impact of sample sizes. The source code is available on github and we also provide an interactive demo for small graphs.\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\"28 1\",\"pages\":\"2388-2399\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2022.3155564\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2022.3155564","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5

摘要

可读性标准,如距离或邻域保留,通常用于优化图的节点链接表示,以支持对底层数据的理解。除了少数例外,图形绘制算法通常会优化这样的一个标准,通常以牺牲其他标准为代价。我们提出了一种布局方法,通过随机梯度下降的多准则可伸缩图形绘制,$(SGD)^{2}$(SGD)2,它可以处理多个可读性标准。$(SGD)^{2}$(SGD)2可以优化任何可以用可微函数描述的准则。我们的方法是灵活的,可以用来优化之前已经考虑过的几个标准(例如,获得理想的边缘长度,应力,邻域保存)以及尚未以这种方式明确优化的其他标准(例如,节点分辨率,角分辨率,纵横比)。这种方法是可伸缩的,可以处理大型图形。底层方法的一种变体也可用于优化平面图中的许多理想属性,同时保持平面性。最后,我们为$(SGD)^{2}$(SGD)2的有效性提供了定量和定性的证据:我们分析了标准之间的相互作用,测量了$(SGD)^{2}$(SGD)2生成的布局的质量以及运行时行为,并分析了样本大小的影响。源代码可以在github上找到,我们还提供了一个小图形的交互式演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, $(SGD)^{2}$(SGD)2
Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, $(SGD)^{2}$(SGD)2, that can handle multiple readability criteria. $(SGD)^{2}$(SGD)2 can optimize any criterion that can be described by a differentiable function. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., node resolution, angular resolution, aspect ratio). The approach is scalable and can handle large graphs. A variation of the underlying approach can also be used to optimize many desirable properties in planar graphs, while maintaining planarity. Finally, we provide quantitative and qualitative evidence of the effectiveness of $(SGD)^{2}$(SGD)2: we analyze the interactions between criteria, measure the quality of layouts generated from $(SGD)^{2}$(SGD)2 as well as the runtime behavior, and analyze the impact of sample sizes. The source code is available on github and we also provide an interactive demo for small graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
期刊最新文献
EventPointMesh: Human Mesh Recovery Solely From Event Point Clouds A Review and Analysis of Evaluation Practices in VIS Domain Applications HINTs: Sensemaking on large collections of documents with Hypergraph visualization and INTelligent agents RSVP for VPSA : A Meta Design Study on Rapid Suggestive Visualization Prototyping for Visual Parameter Space Analysis 3D Shape Completion on Unseen Categories: A Weakly-Supervised Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1