R. Ahmed, Felice De Luca, S. Devkota, S. Kobourov, Mingwei Li
{"title":"基于随机梯度下降的多准则可伸缩图形绘制,$(SGD)^{2}$(SGD)2</","authors":"R. Ahmed, Felice De Luca, S. Devkota, S. Kobourov, Mingwei Li","doi":"10.1109/TVCG.2022.3155564","DOIUrl":null,"url":null,"abstract":"Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq2-3155564.gif\"/></alternatives></inline-formula>, that can handle multiple readability criteria. <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq3-3155564.gif\"/></alternatives></inline-formula> can optimize any criterion that can be described by a differentiable function. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., node resolution, angular resolution, aspect ratio). The approach is scalable and can handle large graphs. A variation of the underlying approach can also be used to optimize many desirable properties in planar graphs, while maintaining planarity. Finally, we provide quantitative and qualitative evidence of the effectiveness of <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq4-3155564.gif\"/></alternatives></inline-formula>: we analyze the interactions between criteria, measure the quality of layouts generated from <inline-formula><tex-math notation=\"LaTeX\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"ahmed-ieq5-3155564.gif\"/></alternatives></inline-formula> as well as the runtime behavior, and analyze the impact of sample sizes. The source code is available on github and we also provide an interactive demo for small graphs.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"28 1","pages":"2388-2399"},"PeriodicalIF":4.7000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, $(SGD)^{2}$(SGD)2\",\"authors\":\"R. Ahmed, Felice De Luca, S. Devkota, S. Kobourov, Mingwei Li\",\"doi\":\"10.1109/TVCG.2022.3155564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq2-3155564.gif\\\"/></alternatives></inline-formula>, that can handle multiple readability criteria. <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq3-3155564.gif\\\"/></alternatives></inline-formula> can optimize any criterion that can be described by a differentiable function. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., node resolution, angular resolution, aspect ratio). The approach is scalable and can handle large graphs. A variation of the underlying approach can also be used to optimize many desirable properties in planar graphs, while maintaining planarity. Finally, we provide quantitative and qualitative evidence of the effectiveness of <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq4-3155564.gif\\\"/></alternatives></inline-formula>: we analyze the interactions between criteria, measure the quality of layouts generated from <inline-formula><tex-math notation=\\\"LaTeX\\\">$(SGD)^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>S</mml:mi><mml:mi>G</mml:mi><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\\\"ahmed-ieq5-3155564.gif\\\"/></alternatives></inline-formula> as well as the runtime behavior, and analyze the impact of sample sizes. The source code is available on github and we also provide an interactive demo for small graphs.\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\"28 1\",\"pages\":\"2388-2399\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2022.3155564\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2022.3155564","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, $(SGD)^{2}$(SGD)2
Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, $(SGD)^{2}$(SGD)2, that can handle multiple readability criteria. $(SGD)^{2}$(SGD)2 can optimize any criterion that can be described by a differentiable function. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., node resolution, angular resolution, aspect ratio). The approach is scalable and can handle large graphs. A variation of the underlying approach can also be used to optimize many desirable properties in planar graphs, while maintaining planarity. Finally, we provide quantitative and qualitative evidence of the effectiveness of $(SGD)^{2}$(SGD)2: we analyze the interactions between criteria, measure the quality of layouts generated from $(SGD)^{2}$(SGD)2 as well as the runtime behavior, and analyze the impact of sample sizes. The source code is available on github and we also provide an interactive demo for small graphs.
期刊介绍:
TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.