油藏计算中结构自组织的发展方法

Jun Yin, Y. Meng, Yaochu Jin
{"title":"油藏计算中结构自组织的发展方法","authors":"Jun Yin, Y. Meng, Yaochu Jin","doi":"10.1109/TAMD.2012.2182765","DOIUrl":null,"url":null,"abstract":"Reservoir computing (RC) is a computational framework for neural network based information processing. Little work, however, has been conducted on adapting the structure of the neural reservoir. In this paper, we propose a developmental approach to structural self-organization in reservoir computing. More specifically, a recurrent spiking neural network is adopted for building up the reservoir, whose synaptic and structural plasticity are regulated by a gene regulatory network (GRN). Meanwhile, the expression dynamics of the GRN is directly influenced by the activity of the neurons in the reservoir. We term this proposed model as GRN-regulated self-organizing RC (GRN-SO-RC). Contrary to a randomly initialized and fixed structure used in most existing RC models, the structure of the reservoir in the GRN-SO-RC model is self-organized to adapt to the specific task using the GRN-based mechanism. To evaluate the proposed model, experiments have been conducted on several benchmark problems widely used in RC models, such as memory capacity and nonlinear auto-regressive moving average. In addition, we apply the GRN-SO-RC model to solving complex real-world problems, including speech recognition and human action recognition. Our experimental results on both the benchmark and real-world problems demonstrate that the GRN-SO-RC model is effective and robust in solving different types of problems.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"4 1","pages":"273-289"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2012.2182765","citationCount":"33","resultStr":"{\"title\":\"A Developmental Approach to Structural Self-Organization in Reservoir Computing\",\"authors\":\"Jun Yin, Y. Meng, Yaochu Jin\",\"doi\":\"10.1109/TAMD.2012.2182765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservoir computing (RC) is a computational framework for neural network based information processing. Little work, however, has been conducted on adapting the structure of the neural reservoir. In this paper, we propose a developmental approach to structural self-organization in reservoir computing. More specifically, a recurrent spiking neural network is adopted for building up the reservoir, whose synaptic and structural plasticity are regulated by a gene regulatory network (GRN). Meanwhile, the expression dynamics of the GRN is directly influenced by the activity of the neurons in the reservoir. We term this proposed model as GRN-regulated self-organizing RC (GRN-SO-RC). Contrary to a randomly initialized and fixed structure used in most existing RC models, the structure of the reservoir in the GRN-SO-RC model is self-organized to adapt to the specific task using the GRN-based mechanism. To evaluate the proposed model, experiments have been conducted on several benchmark problems widely used in RC models, such as memory capacity and nonlinear auto-regressive moving average. In addition, we apply the GRN-SO-RC model to solving complex real-world problems, including speech recognition and human action recognition. Our experimental results on both the benchmark and real-world problems demonstrate that the GRN-SO-RC model is effective and robust in solving different types of problems.\",\"PeriodicalId\":49193,\"journal\":{\"name\":\"IEEE Transactions on Autonomous Mental Development\",\"volume\":\"4 1\",\"pages\":\"273-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TAMD.2012.2182765\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Autonomous Mental Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAMD.2012.2182765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2012.2182765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

储层计算(RC)是一种基于神经网络的信息处理计算框架。然而,关于调节神经库结构的研究很少。本文提出了一种油藏计算中结构自组织的发展方法。更具体地说,采用循环脉冲神经网络来建立水库,水库的突触和结构可塑性由基因调控网络(GRN)调节。同时,GRN的表达动态也直接受到储库中神经元活动的影响。我们将该模型称为grn调节自组织RC (GRN-SO-RC)。与大多数现有RC模型采用随机初始化和固定结构不同,GRN-SO-RC模型中的水库结构采用基于grn的机制自组织以适应特定任务。为了验证所提出的模型,我们对RC模型中常用的几个基准问题,如记忆容量和非线性自回归移动平均进行了实验。此外,我们将GRN-SO-RC模型应用于解决复杂的现实问题,包括语音识别和人类动作识别。我们在基准和现实问题上的实验结果表明,GRN-SO-RC模型在解决不同类型的问题方面是有效的和鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Developmental Approach to Structural Self-Organization in Reservoir Computing
Reservoir computing (RC) is a computational framework for neural network based information processing. Little work, however, has been conducted on adapting the structure of the neural reservoir. In this paper, we propose a developmental approach to structural self-organization in reservoir computing. More specifically, a recurrent spiking neural network is adopted for building up the reservoir, whose synaptic and structural plasticity are regulated by a gene regulatory network (GRN). Meanwhile, the expression dynamics of the GRN is directly influenced by the activity of the neurons in the reservoir. We term this proposed model as GRN-regulated self-organizing RC (GRN-SO-RC). Contrary to a randomly initialized and fixed structure used in most existing RC models, the structure of the reservoir in the GRN-SO-RC model is self-organized to adapt to the specific task using the GRN-based mechanism. To evaluate the proposed model, experiments have been conducted on several benchmark problems widely used in RC models, such as memory capacity and nonlinear auto-regressive moving average. In addition, we apply the GRN-SO-RC model to solving complex real-world problems, including speech recognition and human action recognition. Our experimental results on both the benchmark and real-world problems demonstrate that the GRN-SO-RC model is effective and robust in solving different types of problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1