随机环境下阻抗控制的无模型强化学习

F. Stulp, J. Buchli, Alice Ellmer, M. Mistry, Evangelos A. Theodorou, S. Schaal
{"title":"随机环境下阻抗控制的无模型强化学习","authors":"F. Stulp, J. Buchli, Alice Ellmer, M. Mistry, Evangelos A. Theodorou, S. Schaal","doi":"10.1109/TAMD.2012.2205924","DOIUrl":null,"url":null,"abstract":"For humans and robots, variable impedance control is an essential component for ensuring robust and safe physical interaction with the environment. Humans learn to adapt their impedance to specific tasks and environments; a capability which we continually develop and improve until we are well into our twenties. In this article, we reproduce functionally interesting aspects of learning impedance control in humans on a simulated robot platform. As demonstrated in numerous force field tasks, humans combine two strategies to adapt their impedance to perturbations, thereby minimizing position error and energy consumption: 1) if perturbations are unpredictable, subjects increase their impedance through cocontraction; and 2) if perturbations are predictable, subjects learn a feed-forward command to offset the perturbation. We show how a 7-DOF simulated robot demonstrates similar behavior with our model-free reinforcement learning algorithm PI2, by applying deterministic and stochastic force fields to the robot's end-effector. We show the qualitative similarity between the robot and human movements. Our results provide a biologically plausible approach to learning appropriate impedances purely from experience, without requiring a model of either body or environment dynamics. Not requiring models also facilitates autonomous development for robots, as prespecified models cannot be provided for each environment a robot might encounter.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"15 1","pages":"330-341"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2012.2205924","citationCount":"54","resultStr":"{\"title\":\"Model-Free Reinforcement Learning of Impedance Control in Stochastic Environments\",\"authors\":\"F. Stulp, J. Buchli, Alice Ellmer, M. Mistry, Evangelos A. Theodorou, S. Schaal\",\"doi\":\"10.1109/TAMD.2012.2205924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For humans and robots, variable impedance control is an essential component for ensuring robust and safe physical interaction with the environment. Humans learn to adapt their impedance to specific tasks and environments; a capability which we continually develop and improve until we are well into our twenties. In this article, we reproduce functionally interesting aspects of learning impedance control in humans on a simulated robot platform. As demonstrated in numerous force field tasks, humans combine two strategies to adapt their impedance to perturbations, thereby minimizing position error and energy consumption: 1) if perturbations are unpredictable, subjects increase their impedance through cocontraction; and 2) if perturbations are predictable, subjects learn a feed-forward command to offset the perturbation. We show how a 7-DOF simulated robot demonstrates similar behavior with our model-free reinforcement learning algorithm PI2, by applying deterministic and stochastic force fields to the robot's end-effector. We show the qualitative similarity between the robot and human movements. Our results provide a biologically plausible approach to learning appropriate impedances purely from experience, without requiring a model of either body or environment dynamics. Not requiring models also facilitates autonomous development for robots, as prespecified models cannot be provided for each environment a robot might encounter.\",\"PeriodicalId\":49193,\"journal\":{\"name\":\"IEEE Transactions on Autonomous Mental Development\",\"volume\":\"15 1\",\"pages\":\"330-341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TAMD.2012.2205924\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Autonomous Mental Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAMD.2012.2205924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2012.2205924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

对于人类和机器人来说,可变阻抗控制是确保与环境进行稳健和安全的物理交互的重要组成部分。人类学会了使自己的阻抗适应特定的任务和环境;这种能力我们会不断发展和提高,直到我们二十多岁。在本文中,我们在模拟机器人平台上再现了人类学习阻抗控制的功能有趣方面。正如在许多力场任务中所展示的那样,人类结合两种策略来调整他们的阻抗以适应扰动,从而最大限度地减少位置误差和能量消耗:1)如果扰动不可预测,受试者通过收缩来增加阻抗;2)如果扰动是可预测的,受试者学习前馈命令来抵消扰动。通过将确定性和随机力场应用于机器人的末端执行器,我们展示了如何使用无模型强化学习算法PI2模拟7自由度机器人的类似行为。我们展示了机器人和人类运动之间的定性相似性。我们的研究结果提供了一种生物学上合理的方法,可以纯粹从经验中学习适当的阻抗,而不需要身体或环境动力学模型。不需要模型也有助于机器人的自主开发,因为预先指定的模型不能为机器人可能遇到的每个环境提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Free Reinforcement Learning of Impedance Control in Stochastic Environments
For humans and robots, variable impedance control is an essential component for ensuring robust and safe physical interaction with the environment. Humans learn to adapt their impedance to specific tasks and environments; a capability which we continually develop and improve until we are well into our twenties. In this article, we reproduce functionally interesting aspects of learning impedance control in humans on a simulated robot platform. As demonstrated in numerous force field tasks, humans combine two strategies to adapt their impedance to perturbations, thereby minimizing position error and energy consumption: 1) if perturbations are unpredictable, subjects increase their impedance through cocontraction; and 2) if perturbations are predictable, subjects learn a feed-forward command to offset the perturbation. We show how a 7-DOF simulated robot demonstrates similar behavior with our model-free reinforcement learning algorithm PI2, by applying deterministic and stochastic force fields to the robot's end-effector. We show the qualitative similarity between the robot and human movements. Our results provide a biologically plausible approach to learning appropriate impedances purely from experience, without requiring a model of either body or environment dynamics. Not requiring models also facilitates autonomous development for robots, as prespecified models cannot be provided for each environment a robot might encounter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1