自然视频流中视觉显著性的稀疏约束fMRI解码

Xintao Hu, Cheng Lv, Gong Cheng, Jinglei Lv, Lei Guo, Junwei Han, Tianming Liu
{"title":"自然视频流中视觉显著性的稀疏约束fMRI解码","authors":"Xintao Hu, Cheng Lv, Gong Cheng, Jinglei Lv, Lei Guo, Junwei Han, Tianming Liu","doi":"10.1109/TAMD.2015.2409835","DOIUrl":null,"url":null,"abstract":"Naturalistic stimuli such as video watching have been increasingly used in functional magnetic resonance imaging (fMRI)-based brain encoding and decoding studies since they can provide real and dynamic information that the human brain has to process in everyday life. In this paper, we propose a sparsity-constrained decoding model to explore whether bottom-up visual saliency in continuous video streams can be effectively decoded by brain activity recorded by fMRI, and to examine whether sparsity constraints can improve visual saliency decoding. Specifically, we use a biologically-plausible computational model to quantify the visual saliency in video streams, and adopt a sparse representation algorithm to learn the atomic fMRI signal dictionaries that are representative of the patterns of whole-brain fMRI signals. Sparse representation also links the learned atomic dictionary with the quantified video saliency. Experimental results show that the temporal visual saliency in video stream can be well decoded and the sparse constraints can improve the performance of fMRI decoding models.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"65-75"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2409835","citationCount":"21","resultStr":"{\"title\":\"Sparsity-Constrained fMRI Decoding of Visual Saliency in Naturalistic Video Streams\",\"authors\":\"Xintao Hu, Cheng Lv, Gong Cheng, Jinglei Lv, Lei Guo, Junwei Han, Tianming Liu\",\"doi\":\"10.1109/TAMD.2015.2409835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Naturalistic stimuli such as video watching have been increasingly used in functional magnetic resonance imaging (fMRI)-based brain encoding and decoding studies since they can provide real and dynamic information that the human brain has to process in everyday life. In this paper, we propose a sparsity-constrained decoding model to explore whether bottom-up visual saliency in continuous video streams can be effectively decoded by brain activity recorded by fMRI, and to examine whether sparsity constraints can improve visual saliency decoding. Specifically, we use a biologically-plausible computational model to quantify the visual saliency in video streams, and adopt a sparse representation algorithm to learn the atomic fMRI signal dictionaries that are representative of the patterns of whole-brain fMRI signals. Sparse representation also links the learned atomic dictionary with the quantified video saliency. Experimental results show that the temporal visual saliency in video stream can be well decoded and the sparse constraints can improve the performance of fMRI decoding models.\",\"PeriodicalId\":49193,\"journal\":{\"name\":\"IEEE Transactions on Autonomous Mental Development\",\"volume\":\"7 1\",\"pages\":\"65-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TAMD.2015.2409835\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Autonomous Mental Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAMD.2015.2409835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2409835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

视频观看等自然刺激已越来越多地用于基于功能磁共振成像(fMRI)的大脑编码和解码研究,因为它们可以提供人类大脑在日常生活中必须处理的真实和动态信息。在本文中,我们提出了一个稀疏约束的解码模型,以探索由fMRI记录的大脑活动是否可以有效解码连续视频流中自下而上的视觉显著性,并检验稀疏约束是否可以改善视觉显著性解码。具体来说,我们使用生物学上合理的计算模型来量化视频流中的视觉显著性,并采用稀疏表示算法来学习代表全脑功能磁共振成像信号模式的原子信号字典。稀疏表示还将学习到的原子字典与量化的视频显著性联系起来。实验结果表明,视频流中的时间视觉显著性可以很好地解码,稀疏约束可以提高fMRI解码模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparsity-Constrained fMRI Decoding of Visual Saliency in Naturalistic Video Streams
Naturalistic stimuli such as video watching have been increasingly used in functional magnetic resonance imaging (fMRI)-based brain encoding and decoding studies since they can provide real and dynamic information that the human brain has to process in everyday life. In this paper, we propose a sparsity-constrained decoding model to explore whether bottom-up visual saliency in continuous video streams can be effectively decoded by brain activity recorded by fMRI, and to examine whether sparsity constraints can improve visual saliency decoding. Specifically, we use a biologically-plausible computational model to quantify the visual saliency in video streams, and adopt a sparse representation algorithm to learn the atomic fMRI signal dictionaries that are representative of the patterns of whole-brain fMRI signals. Sparse representation also links the learned atomic dictionary with the quantified video saliency. Experimental results show that the temporal visual saliency in video stream can be well decoded and the sparse constraints can improve the performance of fMRI decoding models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1