Marco Colombo, Riccardo Beltrami, Davide Rattalino, M. Mirando, M. Chiesa, C. Poggio
{"title":"锌-羟基磷灰石牙膏对釉质侵蚀的保护作用:扫描电镜研究。","authors":"Marco Colombo, Riccardo Beltrami, Davide Rattalino, M. Mirando, M. Chiesa, C. Poggio","doi":"10.11138/ads/2016.7.3.038","DOIUrl":null,"url":null,"abstract":"AIM\nThe aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste against an erosive challenge produced by a soft drink (Coca-Cola) using Scanning Electron Microscopy (SEM).\n\n\nMETHODS\nForty specimens were assigned to 4 groups of 10 specimens each (group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, group 3: erosive challenge, fluoride toothpaste treatment, group 4: erosive challenge, zinc-hydroxyapatite toothpaste treatment). The surface of each specimen was imaged by SEM. A visual rating system was used to evaluate the condition of the enamel surface; results were analyzed by nonparametric statistical methods.\n\n\nRESULTS\nStatistically significant differences were found between the samples untreated and those immersed in Coca-Cola (group 1, 2); the highest grade of damage was found in group 2, while the lowest grade was recorded in the samples of group 4. Comparing the groups, the two analyzed toothpaste tended to protect in different extend.\n\n\nCONCLUSIONS\nIn this study treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. This was greater than the effect observed for a normal fluoride toothpaste and confirmed the potential benefit the Zn-HAP technology can provide in protecting enamel from erosive acid challenges.","PeriodicalId":78041,"journal":{"name":"Annali di stomatologia","volume":"7 3 1","pages":"38-45"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Protective effects of a zinc-hydroxyapatite toothpaste on enamel erosion: SEM study.\",\"authors\":\"Marco Colombo, Riccardo Beltrami, Davide Rattalino, M. Mirando, M. Chiesa, C. Poggio\",\"doi\":\"10.11138/ads/2016.7.3.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AIM\\nThe aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste against an erosive challenge produced by a soft drink (Coca-Cola) using Scanning Electron Microscopy (SEM).\\n\\n\\nMETHODS\\nForty specimens were assigned to 4 groups of 10 specimens each (group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, group 3: erosive challenge, fluoride toothpaste treatment, group 4: erosive challenge, zinc-hydroxyapatite toothpaste treatment). The surface of each specimen was imaged by SEM. A visual rating system was used to evaluate the condition of the enamel surface; results were analyzed by nonparametric statistical methods.\\n\\n\\nRESULTS\\nStatistically significant differences were found between the samples untreated and those immersed in Coca-Cola (group 1, 2); the highest grade of damage was found in group 2, while the lowest grade was recorded in the samples of group 4. Comparing the groups, the two analyzed toothpaste tended to protect in different extend.\\n\\n\\nCONCLUSIONS\\nIn this study treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. This was greater than the effect observed for a normal fluoride toothpaste and confirmed the potential benefit the Zn-HAP technology can provide in protecting enamel from erosive acid challenges.\",\"PeriodicalId\":78041,\"journal\":{\"name\":\"Annali di stomatologia\",\"volume\":\"7 3 1\",\"pages\":\"38-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di stomatologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11138/ads/2016.7.3.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di stomatologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11138/ads/2016.7.3.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protective effects of a zinc-hydroxyapatite toothpaste on enamel erosion: SEM study.
AIM
The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste against an erosive challenge produced by a soft drink (Coca-Cola) using Scanning Electron Microscopy (SEM).
METHODS
Forty specimens were assigned to 4 groups of 10 specimens each (group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, group 3: erosive challenge, fluoride toothpaste treatment, group 4: erosive challenge, zinc-hydroxyapatite toothpaste treatment). The surface of each specimen was imaged by SEM. A visual rating system was used to evaluate the condition of the enamel surface; results were analyzed by nonparametric statistical methods.
RESULTS
Statistically significant differences were found between the samples untreated and those immersed in Coca-Cola (group 1, 2); the highest grade of damage was found in group 2, while the lowest grade was recorded in the samples of group 4. Comparing the groups, the two analyzed toothpaste tended to protect in different extend.
CONCLUSIONS
In this study treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. This was greater than the effect observed for a normal fluoride toothpaste and confirmed the potential benefit the Zn-HAP technology can provide in protecting enamel from erosive acid challenges.