SOFC/微型燃气轮机混合分布式能源系统概念设计与性能分析

Zheng Dang, Hua Zhao, G. Xi
{"title":"SOFC/微型燃气轮机混合分布式能源系统概念设计与性能分析","authors":"Zheng Dang, Hua Zhao, G. Xi","doi":"10.1115/1.4029395","DOIUrl":null,"url":null,"abstract":"A numerical model has been developed for the performance analysis of solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid systems with prereforming of natural gas, in which a quasi two-dimensional model has been built up to simulate the cell electrochemical reaction, heat and mass transfer within tubular SOFC. The developed model can be used not only to predict the overall performance of the SOFC/MGT hybrid system but also to reveal the nonuniform temperature distribution within SOFC unit. The effects of turbine inlet temperature (TIT) and pressure ratio (PR) on the performance of the hybrid system have been investigated. The results show that selecting smaller TIT or PR value will lead to relative higher system efficiency and lower CO2 emission ratio; however, this will raise the risk to destroy SOFC beyond the limitation temperature of electrolyte.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"031003"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029395","citationCount":"4","resultStr":"{\"title\":\"Conceptual Design and Performance Analysis of SOFC/Micro Gas Turbine Hybrid Distributed Energy System\",\"authors\":\"Zheng Dang, Hua Zhao, G. Xi\",\"doi\":\"10.1115/1.4029395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical model has been developed for the performance analysis of solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid systems with prereforming of natural gas, in which a quasi two-dimensional model has been built up to simulate the cell electrochemical reaction, heat and mass transfer within tubular SOFC. The developed model can be used not only to predict the overall performance of the SOFC/MGT hybrid system but also to reveal the nonuniform temperature distribution within SOFC unit. The effects of turbine inlet temperature (TIT) and pressure ratio (PR) on the performance of the hybrid system have been investigated. The results show that selecting smaller TIT or PR value will lead to relative higher system efficiency and lower CO2 emission ratio; however, this will raise the risk to destroy SOFC beyond the limitation temperature of electrolyte.\",\"PeriodicalId\":15829,\"journal\":{\"name\":\"Journal of Fuel Cell Science and Technology\",\"volume\":\"12 1\",\"pages\":\"031003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4029395\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuel Cell Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4029395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4029395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

建立了含天然气预成形固体氧化物燃料电池(SOFC)/微型燃气轮机(MGT)混合系统性能分析的数值模型,建立了准二维模型,模拟了管状SOFC内电池的电化学反应、传热和传质过程。所建立的模型不仅可以预测SOFC/MGT混合系统的整体性能,而且可以揭示SOFC单元内部温度分布的不均匀性。研究了涡轮入口温度(TIT)和压力比(PR)对混合动力系统性能的影响。结果表明:选择较小的TIT或PR值可以获得较高的系统效率和较低的CO2排放比;然而,这将增加超过电解质极限温度破坏SOFC的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conceptual Design and Performance Analysis of SOFC/Micro Gas Turbine Hybrid Distributed Energy System
A numerical model has been developed for the performance analysis of solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid systems with prereforming of natural gas, in which a quasi two-dimensional model has been built up to simulate the cell electrochemical reaction, heat and mass transfer within tubular SOFC. The developed model can be used not only to predict the overall performance of the SOFC/MGT hybrid system but also to reveal the nonuniform temperature distribution within SOFC unit. The effects of turbine inlet temperature (TIT) and pressure ratio (PR) on the performance of the hybrid system have been investigated. The results show that selecting smaller TIT or PR value will lead to relative higher system efficiency and lower CO2 emission ratio; however, this will raise the risk to destroy SOFC beyond the limitation temperature of electrolyte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.
期刊最新文献
Real-life omalizumab exposure and discontinuation in a large nationwide population-based study of paediatric and adult asthma patients. Response to Letter to the Editor. What Is Monkeypox? Management of Primary Angle-Closure Glaucoma. Surface Treatments of Stainless Steel by Electroless Silver Coatings as a Bipolar Plate for Proton Exchange Membrane Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1