{"title":"固体氧化物燃料电池循环陶瓷/玻璃复合密封件的热机械性能","authors":"B. Dev, M. Walter","doi":"10.1115/1.4029876","DOIUrl":null,"url":null,"abstract":"The present research focuses on a novel ceramic/glass composite seal. These seals firstunderwent a curing cycle. The cycled seal was then characterized with a laser dilatome-ter to identify the glass transition, softening temperature, and thermal expansion proper-ties. High temperature ring-on-ring (RoR) experiments were performed to study the effectof glass transition and softening temperatures on mechanical response. X-ray diffraction(XRD) techniques in conjunction with post-test micrographs were used to understand theobserved mechanical response. In addition, Weibull statistical analysis performed oncycled seals showed that Weibull modulus had decreased and Weibull characteristicsstrength had increased with multiple thermal cycles. [DOI: 10.1115/1.4029876]Keywords: solid oxide fuel cell (SOFC), ceramic/glass seals, glass transition tempera-ture, biaxial flexural strength, Weibull parameters","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"031009"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029876","citationCount":"4","resultStr":"{\"title\":\"Thermomechanical Properties of Cycled Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells\",\"authors\":\"B. Dev, M. Walter\",\"doi\":\"10.1115/1.4029876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research focuses on a novel ceramic/glass composite seal. These seals firstunderwent a curing cycle. The cycled seal was then characterized with a laser dilatome-ter to identify the glass transition, softening temperature, and thermal expansion proper-ties. High temperature ring-on-ring (RoR) experiments were performed to study the effectof glass transition and softening temperatures on mechanical response. X-ray diffraction(XRD) techniques in conjunction with post-test micrographs were used to understand theobserved mechanical response. In addition, Weibull statistical analysis performed oncycled seals showed that Weibull modulus had decreased and Weibull characteristicsstrength had increased with multiple thermal cycles. [DOI: 10.1115/1.4029876]Keywords: solid oxide fuel cell (SOFC), ceramic/glass seals, glass transition tempera-ture, biaxial flexural strength, Weibull parameters\",\"PeriodicalId\":15829,\"journal\":{\"name\":\"Journal of Fuel Cell Science and Technology\",\"volume\":\"12 1\",\"pages\":\"031009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4029876\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuel Cell Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4029876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4029876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermomechanical Properties of Cycled Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells
The present research focuses on a novel ceramic/glass composite seal. These seals firstunderwent a curing cycle. The cycled seal was then characterized with a laser dilatome-ter to identify the glass transition, softening temperature, and thermal expansion proper-ties. High temperature ring-on-ring (RoR) experiments were performed to study the effectof glass transition and softening temperatures on mechanical response. X-ray diffraction(XRD) techniques in conjunction with post-test micrographs were used to understand theobserved mechanical response. In addition, Weibull statistical analysis performed oncycled seals showed that Weibull modulus had decreased and Weibull characteristicsstrength had increased with multiple thermal cycles. [DOI: 10.1115/1.4029876]Keywords: solid oxide fuel cell (SOFC), ceramic/glass seals, glass transition tempera-ture, biaxial flexural strength, Weibull parameters
期刊介绍:
The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.