Mark P. Zimmerman, D. M. Chan, K. Kester, R. Rael, S. Robertson
{"title":"化感化学转移对寄主、拟寄主和竞争超拟寄主动态的影响","authors":"Mark P. Zimmerman, D. M. Chan, K. Kester, R. Rael, S. Robertson","doi":"10.1111/nrm.12311","DOIUrl":null,"url":null,"abstract":"Allelochemicals produced by plants may be ingested by herbivorous insects and transferred to higher trophic levels with potentially deleterious effects. We develop a system of differential equations to investigate the effect of the transfer of allelochemicals, such as nicotine, on the population dynamics of a system of hosts, parasitoids, and two competing hyperparasitoids that attack different life stages of the parasitoids. We find both somewhat deleterious effects of nicotine on the larvae‐attacking hyperparasitoids and increased attack rates for the pupae‐attacking hyperparasitoids can promote coexistence. We also use an evolutionary game‐theoretic approach to determine the optimal distribution of hyperparasitoid attacks among nicotine‐producing and nicotine‐free plants. With strong deleterious effects of nicotine and increased attack rates for the pupae‐attacking hyperparasitoid, we find both species attack parasitoids on the nicotine‐free plant but only pupae‐attacking hyperparasitoids attack parasitoids on the nicotine‐producing plant.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/nrm.12311","citationCount":"1","resultStr":"{\"title\":\"The effects of allelochemical transfer on the dynamics of hosts, parasitoids, and competing hyperparasitoids\",\"authors\":\"Mark P. Zimmerman, D. M. Chan, K. Kester, R. Rael, S. Robertson\",\"doi\":\"10.1111/nrm.12311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allelochemicals produced by plants may be ingested by herbivorous insects and transferred to higher trophic levels with potentially deleterious effects. We develop a system of differential equations to investigate the effect of the transfer of allelochemicals, such as nicotine, on the population dynamics of a system of hosts, parasitoids, and two competing hyperparasitoids that attack different life stages of the parasitoids. We find both somewhat deleterious effects of nicotine on the larvae‐attacking hyperparasitoids and increased attack rates for the pupae‐attacking hyperparasitoids can promote coexistence. We also use an evolutionary game‐theoretic approach to determine the optimal distribution of hyperparasitoid attacks among nicotine‐producing and nicotine‐free plants. With strong deleterious effects of nicotine and increased attack rates for the pupae‐attacking hyperparasitoid, we find both species attack parasitoids on the nicotine‐free plant but only pupae‐attacking hyperparasitoids attack parasitoids on the nicotine‐producing plant.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/nrm.12311\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12311\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The effects of allelochemical transfer on the dynamics of hosts, parasitoids, and competing hyperparasitoids
Allelochemicals produced by plants may be ingested by herbivorous insects and transferred to higher trophic levels with potentially deleterious effects. We develop a system of differential equations to investigate the effect of the transfer of allelochemicals, such as nicotine, on the population dynamics of a system of hosts, parasitoids, and two competing hyperparasitoids that attack different life stages of the parasitoids. We find both somewhat deleterious effects of nicotine on the larvae‐attacking hyperparasitoids and increased attack rates for the pupae‐attacking hyperparasitoids can promote coexistence. We also use an evolutionary game‐theoretic approach to determine the optimal distribution of hyperparasitoid attacks among nicotine‐producing and nicotine‐free plants. With strong deleterious effects of nicotine and increased attack rates for the pupae‐attacking hyperparasitoid, we find both species attack parasitoids on the nicotine‐free plant but only pupae‐attacking hyperparasitoids attack parasitoids on the nicotine‐producing plant.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.