{"title":"多元空间过程的有效样本量及其在土壤污染中的应用","authors":"R. Vallejos, Jonathan Acosta","doi":"10.1111/nrm.12322","DOIUrl":null,"url":null,"abstract":"Effective sample size accounts for the equivalent number of independent observations contained in a sample of correlated data. This notion has been widely studied in the context of univariate spatial variables. In that case, the effective sample size determines the reduction in the sample size due to the existing spatial correlation. In this paper, we generalize the methodology for multivariate spatial variables to provide a common effective sample size when all variables have been measured at the same locations. Together with the definition, we provide examples to investigate what an effective sample size looks like. An application for a soil contamination data set is considered. To reduce the dimensions of the process, clustering techniques are applied to obtain three bivariate vectors that are modeled using coregionalization models. Because the sample size of the data set is moderate and the locations are very unevenly distributed in the study area, the spatial analysis is challenging and interesting. We find that due to the presence of spatial autocorrelation, the sample size can be reduced by 38.53%, avoiding the duplication of information.","PeriodicalId":49778,"journal":{"name":"Natural Resource Modeling","volume":"34 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/nrm.12322","citationCount":"4","resultStr":"{\"title\":\"The effective sample size for multivariate spatial processes with an application to soil contamination\",\"authors\":\"R. Vallejos, Jonathan Acosta\",\"doi\":\"10.1111/nrm.12322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective sample size accounts for the equivalent number of independent observations contained in a sample of correlated data. This notion has been widely studied in the context of univariate spatial variables. In that case, the effective sample size determines the reduction in the sample size due to the existing spatial correlation. In this paper, we generalize the methodology for multivariate spatial variables to provide a common effective sample size when all variables have been measured at the same locations. Together with the definition, we provide examples to investigate what an effective sample size looks like. An application for a soil contamination data set is considered. To reduce the dimensions of the process, clustering techniques are applied to obtain three bivariate vectors that are modeled using coregionalization models. Because the sample size of the data set is moderate and the locations are very unevenly distributed in the study area, the spatial analysis is challenging and interesting. We find that due to the presence of spatial autocorrelation, the sample size can be reduced by 38.53%, avoiding the duplication of information.\",\"PeriodicalId\":49778,\"journal\":{\"name\":\"Natural Resource Modeling\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/nrm.12322\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resource Modeling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12322\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resource Modeling","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12322","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The effective sample size for multivariate spatial processes with an application to soil contamination
Effective sample size accounts for the equivalent number of independent observations contained in a sample of correlated data. This notion has been widely studied in the context of univariate spatial variables. In that case, the effective sample size determines the reduction in the sample size due to the existing spatial correlation. In this paper, we generalize the methodology for multivariate spatial variables to provide a common effective sample size when all variables have been measured at the same locations. Together with the definition, we provide examples to investigate what an effective sample size looks like. An application for a soil contamination data set is considered. To reduce the dimensions of the process, clustering techniques are applied to obtain three bivariate vectors that are modeled using coregionalization models. Because the sample size of the data set is moderate and the locations are very unevenly distributed in the study area, the spatial analysis is challenging and interesting. We find that due to the presence of spatial autocorrelation, the sample size can be reduced by 38.53%, avoiding the duplication of information.
期刊介绍:
Natural Resource Modeling is an international journal devoted to mathematical modeling of natural resource systems. It reflects the conceptual and methodological core that is common to model building throughout disciplines including such fields as forestry, fisheries, economics and ecology. This core draws upon the analytical and methodological apparatus of mathematics, statistics, and scientific computing.