{"title":"获取可再生资源的最优解的结构","authors":"Thorsten Upmann, D. Gromov","doi":"10.1111/nrm.12355","DOIUrl":null,"url":null,"abstract":"We consider the problem of optimal harvesting of a renewable resource whose dynamics are governed by logistic growth and whose payoff is proportional to the harvest. We consider both the case of a finite and an infinite time horizon and analyse the structure of the optimal solutions and their dependence on the parameters of the model. We show that the optimal policy can only have one of three structures: (1) maximal harvesting effort until the resource is depleted, (2) zero harvesting during an initial time interval followed by a subsequent switch to maximal harvesting effort, or (3) a singular solution, which corresponds to an intermediate level of harvesting, accompanied by the most rapid approach path. All three scenarios emerge, with minor variations, with finite and infinite time horizons, depending on the particular combination of parameters of the system. We characterize the conditions under which the singular solution is optimal and present suggestions for designing an optimal and sustainable harvesting strategy.","PeriodicalId":49778,"journal":{"name":"Natural Resource Modeling","volume":"36 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The structure of optimal solutions for harvesting a renewable resource\",\"authors\":\"Thorsten Upmann, D. Gromov\",\"doi\":\"10.1111/nrm.12355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of optimal harvesting of a renewable resource whose dynamics are governed by logistic growth and whose payoff is proportional to the harvest. We consider both the case of a finite and an infinite time horizon and analyse the structure of the optimal solutions and their dependence on the parameters of the model. We show that the optimal policy can only have one of three structures: (1) maximal harvesting effort until the resource is depleted, (2) zero harvesting during an initial time interval followed by a subsequent switch to maximal harvesting effort, or (3) a singular solution, which corresponds to an intermediate level of harvesting, accompanied by the most rapid approach path. All three scenarios emerge, with minor variations, with finite and infinite time horizons, depending on the particular combination of parameters of the system. We characterize the conditions under which the singular solution is optimal and present suggestions for designing an optimal and sustainable harvesting strategy.\",\"PeriodicalId\":49778,\"journal\":{\"name\":\"Natural Resource Modeling\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resource Modeling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12355\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resource Modeling","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12355","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The structure of optimal solutions for harvesting a renewable resource
We consider the problem of optimal harvesting of a renewable resource whose dynamics are governed by logistic growth and whose payoff is proportional to the harvest. We consider both the case of a finite and an infinite time horizon and analyse the structure of the optimal solutions and their dependence on the parameters of the model. We show that the optimal policy can only have one of three structures: (1) maximal harvesting effort until the resource is depleted, (2) zero harvesting during an initial time interval followed by a subsequent switch to maximal harvesting effort, or (3) a singular solution, which corresponds to an intermediate level of harvesting, accompanied by the most rapid approach path. All three scenarios emerge, with minor variations, with finite and infinite time horizons, depending on the particular combination of parameters of the system. We characterize the conditions under which the singular solution is optimal and present suggestions for designing an optimal and sustainable harvesting strategy.
期刊介绍:
Natural Resource Modeling is an international journal devoted to mathematical modeling of natural resource systems. It reflects the conceptual and methodological core that is common to model building throughout disciplines including such fields as forestry, fisheries, economics and ecology. This core draws upon the analytical and methodological apparatus of mathematics, statistics, and scientific computing.