{"title":"高超声频率下粘性沉积物(泥浆)的声衰减","authors":"B. Brouwers, J. Beeck, E. Lataire","doi":"10.1121/2.0001594","DOIUrl":null,"url":null,"abstract":"The acoustic attenuation of cohesive sediment (mud) at high frequencies ranging from 0.5 MHz to 5.0 MHz is determined. Conventional laboratory experiments based on the pulse-echo technique were performed using a single element immersible ultrasound transducer. The results showed however that due to the time-changing properties of mud a different approach to process the data is required. Additional experiments to determine the acoustic attenuation using multiple alternative ultrasonic devices were conducted. Using the results of the conventional experiments as a benchmark the reliability of these experiments is considered acceptable. This manuscript was originally submitted to the ICUA 2022 conference.","PeriodicalId":88302,"journal":{"name":"Proceedings of meetings on acoustics. Acoustical Society of America","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic attenuation of cohesive sediments (mud) at high ultrasound frequencies\",\"authors\":\"B. Brouwers, J. Beeck, E. Lataire\",\"doi\":\"10.1121/2.0001594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acoustic attenuation of cohesive sediment (mud) at high frequencies ranging from 0.5 MHz to 5.0 MHz is determined. Conventional laboratory experiments based on the pulse-echo technique were performed using a single element immersible ultrasound transducer. The results showed however that due to the time-changing properties of mud a different approach to process the data is required. Additional experiments to determine the acoustic attenuation using multiple alternative ultrasonic devices were conducted. Using the results of the conventional experiments as a benchmark the reliability of these experiments is considered acceptable. This manuscript was originally submitted to the ICUA 2022 conference.\",\"PeriodicalId\":88302,\"journal\":{\"name\":\"Proceedings of meetings on acoustics. Acoustical Society of America\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of meetings on acoustics. Acoustical Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0001594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of meetings on acoustics. Acoustical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0001594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acoustic attenuation of cohesive sediments (mud) at high ultrasound frequencies
The acoustic attenuation of cohesive sediment (mud) at high frequencies ranging from 0.5 MHz to 5.0 MHz is determined. Conventional laboratory experiments based on the pulse-echo technique were performed using a single element immersible ultrasound transducer. The results showed however that due to the time-changing properties of mud a different approach to process the data is required. Additional experiments to determine the acoustic attenuation using multiple alternative ultrasonic devices were conducted. Using the results of the conventional experiments as a benchmark the reliability of these experiments is considered acceptable. This manuscript was originally submitted to the ICUA 2022 conference.