{"title":"磷酸基锌纳米颗粒体外抗菌活性研究","authors":"Daria Baholet, S. Skalickova, T. Kopec, P. Horký","doi":"10.11118/actaun.2022.025","DOIUrl":null,"url":null,"abstract":"In recent years, zinc nanoparticles have captivated an attention due to their antimicrobial properties. Moreover, the advantage of nanomaterials is an ability to modify their chemical composition and influence their antibacterial properties. In this study, zinc-phosphate nanoparticles (ZnNPs) were prepared via chemical route of synthesis. Their antibacterial activity was evaluated by monitoring a bacterial growth of model microorganisms: gram-negative (G - ) E. coli , and gram-positive (G + ) S. aureus as well as methicillin-resistant S. aureus (MRSA). Obtained results have shown, the ZnNPs are the most effective against G + S. aureus compared to MRSA or G - E. coli . The inhibition concentrations for S. aureus , E. coli and MRSA was 0.16, 1.25, 2.5 mM, respectively. To conclude, ZnNPs exhibit antibacterial activity against both G + and G - model microorganisms, however, G - bacteria are more sensitive against ZnNPs.","PeriodicalId":7174,"journal":{"name":"Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro Antimicrobial Activity of Phosphate-Based Zinc Nanoparticles\",\"authors\":\"Daria Baholet, S. Skalickova, T. Kopec, P. Horký\",\"doi\":\"10.11118/actaun.2022.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, zinc nanoparticles have captivated an attention due to their antimicrobial properties. Moreover, the advantage of nanomaterials is an ability to modify their chemical composition and influence their antibacterial properties. In this study, zinc-phosphate nanoparticles (ZnNPs) were prepared via chemical route of synthesis. Their antibacterial activity was evaluated by monitoring a bacterial growth of model microorganisms: gram-negative (G - ) E. coli , and gram-positive (G + ) S. aureus as well as methicillin-resistant S. aureus (MRSA). Obtained results have shown, the ZnNPs are the most effective against G + S. aureus compared to MRSA or G - E. coli . The inhibition concentrations for S. aureus , E. coli and MRSA was 0.16, 1.25, 2.5 mM, respectively. To conclude, ZnNPs exhibit antibacterial activity against both G + and G - model microorganisms, however, G - bacteria are more sensitive against ZnNPs.\",\"PeriodicalId\":7174,\"journal\":{\"name\":\"Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11118/actaun.2022.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11118/actaun.2022.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
近年来,锌纳米颗粒因其抗菌性能引起了人们的关注。此外,纳米材料的优点是能够改变其化学成分并影响其抗菌性能。本研究采用化学合成方法制备了磷酸锌纳米颗粒。通过监测模式微生物的细菌生长来评估它们的抗菌活性:革兰氏阴性(G -)大肠杆菌,革兰氏阳性(G +)金黄色葡萄球菌以及耐甲氧西林金黄色葡萄球菌(MRSA)。结果表明,与MRSA和G - E. coli相比,ZnNPs对G + S. aureus最有效。对金黄色葡萄球菌、大肠杆菌和MRSA的抑制浓度分别为0.16、1.25、2.5 mM。综上所述,ZnNPs对G +和G -模式微生物均具有抗菌活性,但G -模式细菌对ZnNPs更敏感。
In Vitro Antimicrobial Activity of Phosphate-Based Zinc Nanoparticles
In recent years, zinc nanoparticles have captivated an attention due to their antimicrobial properties. Moreover, the advantage of nanomaterials is an ability to modify their chemical composition and influence their antibacterial properties. In this study, zinc-phosphate nanoparticles (ZnNPs) were prepared via chemical route of synthesis. Their antibacterial activity was evaluated by monitoring a bacterial growth of model microorganisms: gram-negative (G - ) E. coli , and gram-positive (G + ) S. aureus as well as methicillin-resistant S. aureus (MRSA). Obtained results have shown, the ZnNPs are the most effective against G + S. aureus compared to MRSA or G - E. coli . The inhibition concentrations for S. aureus , E. coli and MRSA was 0.16, 1.25, 2.5 mM, respectively. To conclude, ZnNPs exhibit antibacterial activity against both G + and G - model microorganisms, however, G - bacteria are more sensitive against ZnNPs.