用双偏振干涉法测定ERβ与单突变ERE的结合亲和力

IF 2.4 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Molecular and Engineering Materials Pub Date : 2016-09-01 DOI:10.1142/S2251237316400086
H. Song, X. Su
{"title":"用双偏振干涉法测定ERβ与单突变ERE的结合亲和力","authors":"H. Song, X. Su","doi":"10.1142/S2251237316400086","DOIUrl":null,"url":null,"abstract":"In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5′-GGTCAnnnTGACC-3′. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ–mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ–wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1640008"},"PeriodicalIF":2.4000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316400086","citationCount":"0","resultStr":"{\"title\":\"Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry\",\"authors\":\"H. Song, X. Su\",\"doi\":\"10.1142/S2251237316400086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5′-GGTCAnnnTGACC-3′. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ–mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ–wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.\",\"PeriodicalId\":16406,\"journal\":{\"name\":\"Journal of Molecular and Engineering Materials\",\"volume\":\"04 1\",\"pages\":\"1640008\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S2251237316400086\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular and Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2251237316400086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251237316400086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在雌激素的经典作用模式中,雌激素受体(er)结合雌激素反应元件(ERE)激活基因转录。一个完美的ERE包含一个13个碱基对的回文重复序列,由3个碱基间隔5 ' -GGTCAnnnTGACC-3 '分隔。除了共识型或野生型ERE (were)外,自然发生的ERE通常有一个或两个碱基对的交替。基于新建立的ChIP-seq热力学建模(TherMos)模型,模拟了ERβ与一系列34 bp突变体EREs (mutERE)之间的结合能,预测了ERβ与13 bp倒置序列不同位点单碱基对偏差的EREs之间的结合亲和力。实验上,建立了双偏振干涉法(DPI)来测量ERβ-mutEREs的结合亲和力。在生物素-中性生物素(NA)-生物素处理的DPI芯片上,固定化were。在直接结合试验中,确定了er β - were的结合亲和力。在竞争实验中,ERβ与突变体EREs预孵育,然后加入固定的were进行竞争结合。这种竞争策略为评估大量不同碱基突变的ERE之间的结合亲和力差异提供了一个成功的平台。实验结果与数学预测的结合能具有良好的相关性,Spearman相关系数为0.97。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry
In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5′-GGTCAnnnTGACC-3′. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ–mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ–wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular and Engineering Materials
Journal of Molecular and Engineering Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
期刊最新文献
Synthesis of Ribociclib using Phase Transfer Catalysis and Ecofriendly Reducing Agent: Potential Method for Industrial Practice Investigation of DFT calculations and molecular docking studies of 4-aminopyridine 4-aminopyridinium thiocyanate and doxorubicin with 1JPW protein Synthesis, Crystal structure and Characterization of Organic Nonlinear Optical Material Benzophenone for Spectroscopic and Optoelectronics applications Green synthesis of novel acridone fused tetracyclic analogues via microwave promoted fast, solvent-free benzylation and their DFT studies Biological appraisals of Cisplatin and Intercalating Analogies of Nanoscale level Metal (II) Complexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1