基于动态可重构的鲁棒心率监测数字辅助模拟前端电源管理策略

Q2 Computer Science ACM SIGBED Review Pub Date : 2015-08-17 DOI:10.1145/2815482.2815489
Chengzhi Zong, Somok Mondal, D. Hall, R. Jafari
{"title":"基于动态可重构的鲁棒心率监测数字辅助模拟前端电源管理策略","authors":"Chengzhi Zong, Somok Mondal, D. Hall, R. Jafari","doi":"10.1145/2815482.2815489","DOIUrl":null,"url":null,"abstract":"This paper presents a reconfiguration methodology to digitally assist a reconfigurable analog front-end (AFE), with the objective of reducing the power consumption of an ECG-based cardiac activity monitoring system, while maintaining an acceptable performance for the desired signal processing. In this study, we focus on the performance of ECG-based heart rate estimation as an example to demonstrate our proposed strategy. Utilizing the consistency and quasi-periodicity of the ECG waveform, two regions are pre-defined based on the prediction of the R peak by a normalized least mean square (NLMS) adaptive filter. The power consumption and performance of the AFE is dynamically reconfigured accordingly. Experimental evaluations show the system can measure heart rate variability (HRV) with an error of 0.5-4 beats/min with the sampling rate reduced from 488 sps to 100 sps and 40 sps for the two regions respectively, bit resolution reduced from 10-bit to 6-bit and noise tolerance substantially relaxed, offering an estimated 62% total power saving.","PeriodicalId":37024,"journal":{"name":"ACM SIGBED Review","volume":"12 1","pages":"36 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2815482.2815489","citationCount":"4","resultStr":"{\"title\":\"Digitally assisted analog front-end power management strategy via dynamic reconfigurability for robust heart rate monitoring\",\"authors\":\"Chengzhi Zong, Somok Mondal, D. Hall, R. Jafari\",\"doi\":\"10.1145/2815482.2815489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a reconfiguration methodology to digitally assist a reconfigurable analog front-end (AFE), with the objective of reducing the power consumption of an ECG-based cardiac activity monitoring system, while maintaining an acceptable performance for the desired signal processing. In this study, we focus on the performance of ECG-based heart rate estimation as an example to demonstrate our proposed strategy. Utilizing the consistency and quasi-periodicity of the ECG waveform, two regions are pre-defined based on the prediction of the R peak by a normalized least mean square (NLMS) adaptive filter. The power consumption and performance of the AFE is dynamically reconfigured accordingly. Experimental evaluations show the system can measure heart rate variability (HRV) with an error of 0.5-4 beats/min with the sampling rate reduced from 488 sps to 100 sps and 40 sps for the two regions respectively, bit resolution reduced from 10-bit to 6-bit and noise tolerance substantially relaxed, offering an estimated 62% total power saving.\",\"PeriodicalId\":37024,\"journal\":{\"name\":\"ACM SIGBED Review\",\"volume\":\"12 1\",\"pages\":\"36 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2815482.2815489\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGBED Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2815482.2815489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGBED Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2815482.2815489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种重构方法,以数字方式辅助可重构模拟前端(AFE),目的是降低基于ecg的心脏活动监测系统的功耗,同时保持所需信号处理的可接受性能。在这项研究中,我们将重点放在基于心电图的心率估计的性能上,作为一个例子来证明我们提出的策略。利用心电波形的一致性和准周期性,利用归一化最小均方(NLMS)自适应滤波器对R峰的预测,预先定义两个区域。对AFE的功耗和性能进行动态重新配置。实验评估表明,该系统可以测量心率变异性(HRV),误差为0.5-4次/分钟,采样率分别从488 sps降低到100 sps和40 sps,比特分辨率从10位降低到6位,噪声容忍度大大降低,估计可节省62%的总功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digitally assisted analog front-end power management strategy via dynamic reconfigurability for robust heart rate monitoring
This paper presents a reconfiguration methodology to digitally assist a reconfigurable analog front-end (AFE), with the objective of reducing the power consumption of an ECG-based cardiac activity monitoring system, while maintaining an acceptable performance for the desired signal processing. In this study, we focus on the performance of ECG-based heart rate estimation as an example to demonstrate our proposed strategy. Utilizing the consistency and quasi-periodicity of the ECG waveform, two regions are pre-defined based on the prediction of the R peak by a normalized least mean square (NLMS) adaptive filter. The power consumption and performance of the AFE is dynamically reconfigured accordingly. Experimental evaluations show the system can measure heart rate variability (HRV) with an error of 0.5-4 beats/min with the sampling rate reduced from 488 sps to 100 sps and 40 sps for the two regions respectively, bit resolution reduced from 10-bit to 6-bit and noise tolerance substantially relaxed, offering an estimated 62% total power saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM SIGBED Review
ACM SIGBED Review Computer Science-Computer Science (miscellaneous)
自引率
0.00%
发文量
0
期刊最新文献
Enabling transparent hardware acceleration on Zynq SoC for scientific computing An analysis and simulation tool of real-time communications in on-chip networks Earl Symphony DynaMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1