检测途径转录与临床参数相关。

I. Ulitsky, R. Shamir
{"title":"检测途径转录与临床参数相关。","authors":"I. Ulitsky, R. Shamir","doi":"10.1142/9781848162648_0022","DOIUrl":null,"url":null,"abstract":"The recent explosion in the number of clinical studies involving microarray data calls for novel computational methods for their dissection. Human protein interaction networks are rapidly growing and can assist in the extraction of functional modules from microarray data. We describe a novel methodology for extraction of connected network modules with coherent gene expression patterns that are correlated with a specific clinical parameter. Our approach suits both numerical (e.g., age or tumor size) and logical parameters (e.g., gender or mutation status). We demonstrate the method on a large breast cancer dataset, where we identify biologically-relevant modules related to nine clinical parameters including patient age, tumor size, and metastasis-free survival. Our method is capable of detecting disease-relevant pathways that could not be found using other methods. Our results support some previous hypotheses regarding the molecular pathways underlying diversity of breast tumors and suggest novel ones.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"249-58"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Detecting pathways transcriptionally correlated with clinical parameters.\",\"authors\":\"I. Ulitsky, R. Shamir\",\"doi\":\"10.1142/9781848162648_0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent explosion in the number of clinical studies involving microarray data calls for novel computational methods for their dissection. Human protein interaction networks are rapidly growing and can assist in the extraction of functional modules from microarray data. We describe a novel methodology for extraction of connected network modules with coherent gene expression patterns that are correlated with a specific clinical parameter. Our approach suits both numerical (e.g., age or tumor size) and logical parameters (e.g., gender or mutation status). We demonstrate the method on a large breast cancer dataset, where we identify biologically-relevant modules related to nine clinical parameters including patient age, tumor size, and metastasis-free survival. Our method is capable of detecting disease-relevant pathways that could not be found using other methods. Our results support some previous hypotheses regarding the molecular pathways underlying diversity of breast tumors and suggest novel ones.\",\"PeriodicalId\":72665,\"journal\":{\"name\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"volume\":\"7 1\",\"pages\":\"249-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational systems bioinformatics. Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848162648_0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848162648_0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

最近,涉及微阵列数据的临床研究数量激增,需要新的计算方法来解剖它们。人类蛋白质相互作用网络正在迅速发展,可以帮助从微阵列数据中提取功能模块。我们描述了一种新的方法,用于提取与特定临床参数相关的具有相干基因表达模式的连接网络模块。我们的方法既适用于数值(例如,年龄或肿瘤大小),也适用于逻辑参数(例如,性别或突变状态)。我们在一个大型乳腺癌数据集上演示了该方法,在那里我们确定了与九个临床参数相关的生物学相关模块,包括患者年龄、肿瘤大小和无转移生存期。我们的方法能够检测到其他方法无法发现的疾病相关途径。我们的研究结果支持了先前关于乳腺肿瘤多样性的分子途径的一些假设,并提出了新的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting pathways transcriptionally correlated with clinical parameters.
The recent explosion in the number of clinical studies involving microarray data calls for novel computational methods for their dissection. Human protein interaction networks are rapidly growing and can assist in the extraction of functional modules from microarray data. We describe a novel methodology for extraction of connected network modules with coherent gene expression patterns that are correlated with a specific clinical parameter. Our approach suits both numerical (e.g., age or tumor size) and logical parameters (e.g., gender or mutation status). We demonstrate the method on a large breast cancer dataset, where we identify biologically-relevant modules related to nine clinical parameters including patient age, tumor size, and metastasis-free survival. Our method is capable of detecting disease-relevant pathways that could not be found using other methods. Our results support some previous hypotheses regarding the molecular pathways underlying diversity of breast tumors and suggest novel ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Gene Discovery in the Human Malaria Parasite using Nucleosome Positioning Data. Estimating support for protein-protein interaction data with applications to function prediction. On the accurate construction of consensus genetic maps. Efficient haplotype inference from pedigrees with missing data using linear systems with disjoint-set data structures. Knowledge representation and data mining for biological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1