{"title":"基于图神经网络的在线社交网络信息传播意见领袖研究","authors":"Lokesh Jain, R. Katarya, Shelly Sachdeva","doi":"10.1145/3580516","DOIUrl":null,"url":null,"abstract":"Various opportunities are available to depict different domains due to the diverse nature of social networks and researchers' insatiable. An opinion leader is a human entity or cluster of people who can redirect human assessment strategy by intellectual skills in a social network. A more comprehensive range of approaches is developed to detect opinion leaders based on network-specific and heuristic parameters. For many years, deep learning–based models have solved various real-world multifaceted, graph-based problems with high accuracy and efficiency. The Graph Neural Network (GNN) is a deep learning–based model that modernized neural networks’ efficiency by analyzing and extracting latent dependencies and confined embedding via messaging and neighborhood aggregation of data in the network. In this article, we have proposed an exclusive GNN for Opinion Leader Identification (GOLI) model utilizing the power of GNNs to categorize the opinion leaders and their impact on online social networks. In this model, we first measure the n-node neighbor's reputation of the node based on materialized trust. Next, we perform centrality conciliation instead of the input data's conventional node-embedding mechanism. We experiment with the proposed model on six different online social networks consisting of billions of users’ data to validate the model's authenticity. Finally, after training, we found the top-N opinion leaders for each dataset and analyzed how the opinion leaders are influential in information diffusion. The training-testing accuracy and error rate are also measured and compared with the other state-of-art standard Social Network Analysis (SNA) measures. We determined that the GNN-based model produced high performance concerning accuracy and precision.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"17 1","pages":"1 - 37"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Opinion Leaders for Information Diffusion Using Graph Neural Network in Online Social Networks\",\"authors\":\"Lokesh Jain, R. Katarya, Shelly Sachdeva\",\"doi\":\"10.1145/3580516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various opportunities are available to depict different domains due to the diverse nature of social networks and researchers' insatiable. An opinion leader is a human entity or cluster of people who can redirect human assessment strategy by intellectual skills in a social network. A more comprehensive range of approaches is developed to detect opinion leaders based on network-specific and heuristic parameters. For many years, deep learning–based models have solved various real-world multifaceted, graph-based problems with high accuracy and efficiency. The Graph Neural Network (GNN) is a deep learning–based model that modernized neural networks’ efficiency by analyzing and extracting latent dependencies and confined embedding via messaging and neighborhood aggregation of data in the network. In this article, we have proposed an exclusive GNN for Opinion Leader Identification (GOLI) model utilizing the power of GNNs to categorize the opinion leaders and their impact on online social networks. In this model, we first measure the n-node neighbor's reputation of the node based on materialized trust. Next, we perform centrality conciliation instead of the input data's conventional node-embedding mechanism. We experiment with the proposed model on six different online social networks consisting of billions of users’ data to validate the model's authenticity. Finally, after training, we found the top-N opinion leaders for each dataset and analyzed how the opinion leaders are influential in information diffusion. The training-testing accuracy and error rate are also measured and compared with the other state-of-art standard Social Network Analysis (SNA) measures. We determined that the GNN-based model produced high performance concerning accuracy and precision.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\"17 1\",\"pages\":\"1 - 37\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580516\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580516","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Opinion Leaders for Information Diffusion Using Graph Neural Network in Online Social Networks
Various opportunities are available to depict different domains due to the diverse nature of social networks and researchers' insatiable. An opinion leader is a human entity or cluster of people who can redirect human assessment strategy by intellectual skills in a social network. A more comprehensive range of approaches is developed to detect opinion leaders based on network-specific and heuristic parameters. For many years, deep learning–based models have solved various real-world multifaceted, graph-based problems with high accuracy and efficiency. The Graph Neural Network (GNN) is a deep learning–based model that modernized neural networks’ efficiency by analyzing and extracting latent dependencies and confined embedding via messaging and neighborhood aggregation of data in the network. In this article, we have proposed an exclusive GNN for Opinion Leader Identification (GOLI) model utilizing the power of GNNs to categorize the opinion leaders and their impact on online social networks. In this model, we first measure the n-node neighbor's reputation of the node based on materialized trust. Next, we perform centrality conciliation instead of the input data's conventional node-embedding mechanism. We experiment with the proposed model on six different online social networks consisting of billions of users’ data to validate the model's authenticity. Finally, after training, we found the top-N opinion leaders for each dataset and analyzed how the opinion leaders are influential in information diffusion. The training-testing accuracy and error rate are also measured and compared with the other state-of-art standard Social Network Analysis (SNA) measures. We determined that the GNN-based model produced high performance concerning accuracy and precision.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.