Mahesha N. Nadugala, P. Premaratne, C. Goonasekara
{"title":"登革热E和prM蛋白线性b细胞表位预测的系统生物信息学方法","authors":"Mahesha N. Nadugala, P. Premaratne, C. Goonasekara","doi":"10.1155/2016/1373157","DOIUrl":null,"url":null,"abstract":"B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48–55), epitope number 4 of E protein at amino acids 48–55, EP9/E (165–182), EP11/E (218–233), EP20/E (322–349), EP21/E (326–353), EP23/E (356–365), and EP25/E (380–386), showed a high intraserotype conservancy with very low pan-serotype conservancy, demonstrating a potential target as serotype specific diagnostic markers. EP3 (30–41) located in domain-I and EP26/E (393–409), EP27/E (416–435), EP28/E (417–430) located in the stem region of E protein, and EP8/prM (93–112) from the prM protein have a pan-serotype conservancy higher than 70%. These epitopes indicate a potential use as universal vaccine candidates, subjected to verification of their potential in viral neutralization. EP2/E (16–21), EP5/E (62–123), EP6/E (63–89), EP19/E (310–329), and EP24/E (371–402), which have more than 50% pan-serotype conservancies, were found on E protein regions that are important in host cell attachment. Previous studies further show evidence for some of these epitopes to generate cross-reactive neutralizing antibodies, indicating their importance in antiviral strategies for DENV. This study suggests that bioinformatic approaches are attractive first line of screening for identification of linear B-cell epitopes.","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/1373157","citationCount":"9","resultStr":"{\"title\":\"Systematic Bioinformatic Approach for Prediction of Linear B-Cell Epitopes on Dengue E and prM Protein\",\"authors\":\"Mahesha N. Nadugala, P. Premaratne, C. Goonasekara\",\"doi\":\"10.1155/2016/1373157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48–55), epitope number 4 of E protein at amino acids 48–55, EP9/E (165–182), EP11/E (218–233), EP20/E (322–349), EP21/E (326–353), EP23/E (356–365), and EP25/E (380–386), showed a high intraserotype conservancy with very low pan-serotype conservancy, demonstrating a potential target as serotype specific diagnostic markers. EP3 (30–41) located in domain-I and EP26/E (393–409), EP27/E (416–435), EP28/E (417–430) located in the stem region of E protein, and EP8/prM (93–112) from the prM protein have a pan-serotype conservancy higher than 70%. These epitopes indicate a potential use as universal vaccine candidates, subjected to verification of their potential in viral neutralization. EP2/E (16–21), EP5/E (62–123), EP6/E (63–89), EP19/E (310–329), and EP24/E (371–402), which have more than 50% pan-serotype conservancies, were found on E protein regions that are important in host cell attachment. Previous studies further show evidence for some of these epitopes to generate cross-reactive neutralizing antibodies, indicating their importance in antiviral strategies for DENV. This study suggests that bioinformatic approaches are attractive first line of screening for identification of linear B-cell epitopes.\",\"PeriodicalId\":39059,\"journal\":{\"name\":\"Advances in Bioinformatics\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/1373157\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1373157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/1373157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Systematic Bioinformatic Approach for Prediction of Linear B-Cell Epitopes on Dengue E and prM Protein
B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48–55), epitope number 4 of E protein at amino acids 48–55, EP9/E (165–182), EP11/E (218–233), EP20/E (322–349), EP21/E (326–353), EP23/E (356–365), and EP25/E (380–386), showed a high intraserotype conservancy with very low pan-serotype conservancy, demonstrating a potential target as serotype specific diagnostic markers. EP3 (30–41) located in domain-I and EP26/E (393–409), EP27/E (416–435), EP28/E (417–430) located in the stem region of E protein, and EP8/prM (93–112) from the prM protein have a pan-serotype conservancy higher than 70%. These epitopes indicate a potential use as universal vaccine candidates, subjected to verification of their potential in viral neutralization. EP2/E (16–21), EP5/E (62–123), EP6/E (63–89), EP19/E (310–329), and EP24/E (371–402), which have more than 50% pan-serotype conservancies, were found on E protein regions that are important in host cell attachment. Previous studies further show evidence for some of these epitopes to generate cross-reactive neutralizing antibodies, indicating their importance in antiviral strategies for DENV. This study suggests that bioinformatic approaches are attractive first line of screening for identification of linear B-cell epitopes.