D. Singh, G. D. Thakre, L. N. S. Konathala, V. D. Prasad
{"title":"发动机润滑油中使用的硅酸盐化合物对磨损表面的摩擦减少能力","authors":"D. Singh, G. D. Thakre, L. N. S. Konathala, V. D. Prasad","doi":"10.1155/2016/1901493","DOIUrl":null,"url":null,"abstract":"Effects of magnesium silicate and alumina dispersed in engine lubricant on friction, wear, and tribosurface characteristics are studied under boundary and mixed lubrication conditions. Magnesium silicate and alumina, henceforth called as friction reducing compounds (FRC), were dispersed in engine lubricant in very low concentration of 0.01% weight/volume. Four-ball wear test rig was used to assess friction coefficient and wear scar diameter of balls lubricated with and without FRC based engine lubricant. Scanning electron microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) was used to analyse the tribosurface properties and elemental distributions on worn surfaces of the balls. Test results revealed that FRC based engine lubricant increases friction coefficient but marginally reduces wear scar diameter of new balls, whereas, test on the worn-out balls running on FRC based engine lubricants shows 46% reduction in friction coefficient compared to the new balls running on engine lubricants without FRC. Investigations on tribosurfaces with respect to morphology and elemental distribution showed the presence of Si and O elements in micropores of the worn surfaces of the balls, indicating role of FRC in friction coefficient reduction and antiwear properties. These FRC based engine lubricants may be used in the in-use engines.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/1901493","citationCount":"9","resultStr":"{\"title\":\"Friction Reduction Capabilities of Silicate Compounds Used in an Engine Lubricant on Worn Surfaces\",\"authors\":\"D. Singh, G. D. Thakre, L. N. S. Konathala, V. D. Prasad\",\"doi\":\"10.1155/2016/1901493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effects of magnesium silicate and alumina dispersed in engine lubricant on friction, wear, and tribosurface characteristics are studied under boundary and mixed lubrication conditions. Magnesium silicate and alumina, henceforth called as friction reducing compounds (FRC), were dispersed in engine lubricant in very low concentration of 0.01% weight/volume. Four-ball wear test rig was used to assess friction coefficient and wear scar diameter of balls lubricated with and without FRC based engine lubricant. Scanning electron microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) was used to analyse the tribosurface properties and elemental distributions on worn surfaces of the balls. Test results revealed that FRC based engine lubricant increases friction coefficient but marginally reduces wear scar diameter of new balls, whereas, test on the worn-out balls running on FRC based engine lubricants shows 46% reduction in friction coefficient compared to the new balls running on engine lubricants without FRC. Investigations on tribosurfaces with respect to morphology and elemental distribution showed the presence of Si and O elements in micropores of the worn surfaces of the balls, indicating role of FRC in friction coefficient reduction and antiwear properties. These FRC based engine lubricants may be used in the in-use engines.\",\"PeriodicalId\":44668,\"journal\":{\"name\":\"Advances in Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/1901493\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1901493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/1901493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Friction Reduction Capabilities of Silicate Compounds Used in an Engine Lubricant on Worn Surfaces
Effects of magnesium silicate and alumina dispersed in engine lubricant on friction, wear, and tribosurface characteristics are studied under boundary and mixed lubrication conditions. Magnesium silicate and alumina, henceforth called as friction reducing compounds (FRC), were dispersed in engine lubricant in very low concentration of 0.01% weight/volume. Four-ball wear test rig was used to assess friction coefficient and wear scar diameter of balls lubricated with and without FRC based engine lubricant. Scanning electron microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) was used to analyse the tribosurface properties and elemental distributions on worn surfaces of the balls. Test results revealed that FRC based engine lubricant increases friction coefficient but marginally reduces wear scar diameter of new balls, whereas, test on the worn-out balls running on FRC based engine lubricants shows 46% reduction in friction coefficient compared to the new balls running on engine lubricants without FRC. Investigations on tribosurfaces with respect to morphology and elemental distribution showed the presence of Si and O elements in micropores of the worn surfaces of the balls, indicating role of FRC in friction coefficient reduction and antiwear properties. These FRC based engine lubricants may be used in the in-use engines.