{"title":"温度对非离子表面活性剂聚氧乙烯山梨糖脂肪酸酯临界胶束浓度和胶束热力学的影响","authors":"E. Mohajeri, G. D. Noudeh","doi":"10.1155/2012/961739","DOIUrl":null,"url":null,"abstract":"In this study, non-ionic surfactants, polyoxyethylene sorbitan fatty acid esters (polysorbate) are chosen to examine the temperature effect on the CMC over a wide temperature range. The enthalpy and entropy of micelle formation are evaluated according to the phase separation model. The surface tension of solutions was determined by means of Du Nouys ring. The CMC values were taken from the sharp breaks in the surface tension vs. logarithms of surfactant concentration plots. As the surfactants' chain length increases the CMC at a constant temperature decreases, which is directly related to the decrease of hydrophilicity of the molecules. For each surfactant, as the system temperature increases, the CMC initially decreases and then increases, owing to the smaller probability of hydrogen bond formation at higher temperatures. The onset of micellization tends to occur at higher concentrations as the temperature increases. To evaluate the enthalpy of micellization, the CMCs are first correlated by a polynomial equation. It is found that ∆Gom decreases monotonically as the temperature increases over the whole temperature range. Both ∆Hom and ∆Som appear to be decrease monotonically with an increase in temperature. The compensation temperature was found to be 42 oC by linear regression over the whole temperature range and for all three surfactant systems together.","PeriodicalId":11519,"journal":{"name":"E-journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/961739","citationCount":"118","resultStr":"{\"title\":\"Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: Polyoxyethylene Sorbitan Fatty Acid Esters\",\"authors\":\"E. Mohajeri, G. D. Noudeh\",\"doi\":\"10.1155/2012/961739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, non-ionic surfactants, polyoxyethylene sorbitan fatty acid esters (polysorbate) are chosen to examine the temperature effect on the CMC over a wide temperature range. The enthalpy and entropy of micelle formation are evaluated according to the phase separation model. The surface tension of solutions was determined by means of Du Nouys ring. The CMC values were taken from the sharp breaks in the surface tension vs. logarithms of surfactant concentration plots. As the surfactants' chain length increases the CMC at a constant temperature decreases, which is directly related to the decrease of hydrophilicity of the molecules. For each surfactant, as the system temperature increases, the CMC initially decreases and then increases, owing to the smaller probability of hydrogen bond formation at higher temperatures. The onset of micellization tends to occur at higher concentrations as the temperature increases. To evaluate the enthalpy of micellization, the CMCs are first correlated by a polynomial equation. It is found that ∆Gom decreases monotonically as the temperature increases over the whole temperature range. Both ∆Hom and ∆Som appear to be decrease monotonically with an increase in temperature. The compensation temperature was found to be 42 oC by linear regression over the whole temperature range and for all three surfactant systems together.\",\"PeriodicalId\":11519,\"journal\":{\"name\":\"E-journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/961739\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/961739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/961739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: Polyoxyethylene Sorbitan Fatty Acid Esters
In this study, non-ionic surfactants, polyoxyethylene sorbitan fatty acid esters (polysorbate) are chosen to examine the temperature effect on the CMC over a wide temperature range. The enthalpy and entropy of micelle formation are evaluated according to the phase separation model. The surface tension of solutions was determined by means of Du Nouys ring. The CMC values were taken from the sharp breaks in the surface tension vs. logarithms of surfactant concentration plots. As the surfactants' chain length increases the CMC at a constant temperature decreases, which is directly related to the decrease of hydrophilicity of the molecules. For each surfactant, as the system temperature increases, the CMC initially decreases and then increases, owing to the smaller probability of hydrogen bond formation at higher temperatures. The onset of micellization tends to occur at higher concentrations as the temperature increases. To evaluate the enthalpy of micellization, the CMCs are first correlated by a polynomial equation. It is found that ∆Gom decreases monotonically as the temperature increases over the whole temperature range. Both ∆Hom and ∆Som appear to be decrease monotonically with an increase in temperature. The compensation temperature was found to be 42 oC by linear regression over the whole temperature range and for all three surfactant systems together.