热塑性共聚酯弹性体复合材料的动态力学分析及三体磨粒磨损行为

IF 1.5 Q3 ENGINEERING, MECHANICAL Advances in Tribology Pub Date : 2014-11-19 DOI:10.1155/2014/210187
H. Rajashekaraiah, Sekar Mohan, P. K. Pallathadka, Suresha Bhimappa
{"title":"热塑性共聚酯弹性体复合材料的动态力学分析及三体磨粒磨损行为","authors":"H. Rajashekaraiah, Sekar Mohan, P. K. Pallathadka, Suresha Bhimappa","doi":"10.1155/2014/210187","DOIUrl":null,"url":null,"abstract":"Various amounts of short fibers (glass and carbon) and particulate fillers like polytetrafluoroethylene (PTFE), silicon carbide (SiC), and alumina (Al2O3) were systematically introduced into the thermoplastic copolyester elastomer (TCE) matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA) and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region), the storage modulus increases with increase in wt.% of reinforcement (fiber","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2014 1","pages":"1-14"},"PeriodicalIF":1.5000,"publicationDate":"2014-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/210187","citationCount":"30","resultStr":"{\"title\":\"Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites\",\"authors\":\"H. Rajashekaraiah, Sekar Mohan, P. K. Pallathadka, Suresha Bhimappa\",\"doi\":\"10.1155/2014/210187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various amounts of short fibers (glass and carbon) and particulate fillers like polytetrafluoroethylene (PTFE), silicon carbide (SiC), and alumina (Al2O3) were systematically introduced into the thermoplastic copolyester elastomer (TCE) matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA) and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region), the storage modulus increases with increase in wt.% of reinforcement (fiber\",\"PeriodicalId\":44668,\"journal\":{\"name\":\"Advances in Tribology\",\"volume\":\"2014 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/210187\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/210187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/210187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 30

摘要

不同数量的短纤维(玻璃和碳)和颗粒填料,如聚四氟乙烯(PTFE),碳化硅(SiC)和氧化铝(Al2O3)被系统地引入热塑性共聚弹性体(TCE)基体中以增强目的。通过动态力学分析(DMA)研究了材料的储存模量、损耗模量和Tan δ等力学性能,并在干砂橡胶轮磨损试验机上研究了三体磨粒磨损性能。在磨料磨损研究中,采用三因素三水平正交法规划试验。与TCE填充PTFE复合材料相比,TCE杂化复合材料的复合模量提高了。在较低的温度下(在玻璃区),存储模量随着增强纤维wt %的增加而增加
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites
Various amounts of short fibers (glass and carbon) and particulate fillers like polytetrafluoroethylene (PTFE), silicon carbide (SiC), and alumina (Al2O3) were systematically introduced into the thermoplastic copolyester elastomer (TCE) matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA) and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region), the storage modulus increases with increase in wt.% of reinforcement (fiber
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Tribological and Mechanical Properties of Gradient Coating on Al2O3-Based Coating Produced by Detonation Spraying Methods Investigation on the Cutting Force and Surface Quality in Harmonically Vibrated Broaching (HVB) Influence of Spraying Parameters on the Structure and Tribological Properties of Cr3C2-NiCr Detonation Coatings Assessment of the Conventional Acid-Clay Method in Reclaiming Waste Crankcase Lubricating Oil Dynamic Processes of Self-Organization in Nonstationary Conditions of Friction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1