A. Beer, Tina Plank, Evangelia-Regkina Symeonidou, G. Meyer, M. Greenlee
{"title":"结合纤维追踪和功能性脑成像来揭示人类听觉-视觉整合的脑网络","authors":"A. Beer, Tina Plank, Evangelia-Regkina Symeonidou, G. Meyer, M. Greenlee","doi":"10.1163/187847612X646280","DOIUrl":null,"url":null,"abstract":"Previous functional magnetic resonance imaging (MRI) found various brain areas in the temporal and occipital lobe involved in integrating auditory and visual object information. Fiber tracking based on diffusion-weighted MRI suggested neuroanatomical connections between auditory cortex and sub-regions of the temporal and occipital lobe. However, the relationship between functional activity and white-matter tracks remained unclear. Here, we combined probabilistic tracking and functional MRI in order to reveal the structural connections related to auditory–visual object perception. Ten healthy people were examined by diffusion-weighted and functional MRI. During functional examinations they viewed either movies of lip or body movements, listened to corresponding sounds (phonological sounds or body action sounds), or a combination of both. We found that phonological sounds elicited stronger activity in the lateral superior temporal gyrus (STG) than body action sounds. Body movements elicited stronger activity in the lateral occipital cortex than lip movements. Functional activity in the phonological STG region and the lateral occipital body area were mutually modulated (sub-additive) by combined auditory–visual stimulation. Moreover, bimodal stimuli engaged a region in the posterior superior temporal sulcus (STS). Probabilistic tracking revealed white-matter tracks between the auditory cortex and sub-regions of the STS (anterior and posterior) and occipital cortex. The posterior STS region was also found to be relevant for auditory–visual object perception. The anterior STS region showed connections to the phonological STG area and to the lateral occipital body area. Our findings suggest that multisensory networks in the temporal lobe are best revealed by combining functional and structural measures.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"5-5"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X646280","citationCount":"1","resultStr":"{\"title\":\"Combining fiber tracking and functional brain imaging for revealing brain networks involved in auditory–visual integration in humans\",\"authors\":\"A. Beer, Tina Plank, Evangelia-Regkina Symeonidou, G. Meyer, M. Greenlee\",\"doi\":\"10.1163/187847612X646280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous functional magnetic resonance imaging (MRI) found various brain areas in the temporal and occipital lobe involved in integrating auditory and visual object information. Fiber tracking based on diffusion-weighted MRI suggested neuroanatomical connections between auditory cortex and sub-regions of the temporal and occipital lobe. However, the relationship between functional activity and white-matter tracks remained unclear. Here, we combined probabilistic tracking and functional MRI in order to reveal the structural connections related to auditory–visual object perception. Ten healthy people were examined by diffusion-weighted and functional MRI. During functional examinations they viewed either movies of lip or body movements, listened to corresponding sounds (phonological sounds or body action sounds), or a combination of both. We found that phonological sounds elicited stronger activity in the lateral superior temporal gyrus (STG) than body action sounds. Body movements elicited stronger activity in the lateral occipital cortex than lip movements. Functional activity in the phonological STG region and the lateral occipital body area were mutually modulated (sub-additive) by combined auditory–visual stimulation. Moreover, bimodal stimuli engaged a region in the posterior superior temporal sulcus (STS). Probabilistic tracking revealed white-matter tracks between the auditory cortex and sub-regions of the STS (anterior and posterior) and occipital cortex. The posterior STS region was also found to be relevant for auditory–visual object perception. The anterior STS region showed connections to the phonological STG area and to the lateral occipital body area. Our findings suggest that multisensory networks in the temporal lobe are best revealed by combining functional and structural measures.\",\"PeriodicalId\":49553,\"journal\":{\"name\":\"Seeing and Perceiving\",\"volume\":\"25 1\",\"pages\":\"5-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/187847612X646280\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seeing and Perceiving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/187847612X646280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seeing and Perceiving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/187847612X646280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining fiber tracking and functional brain imaging for revealing brain networks involved in auditory–visual integration in humans
Previous functional magnetic resonance imaging (MRI) found various brain areas in the temporal and occipital lobe involved in integrating auditory and visual object information. Fiber tracking based on diffusion-weighted MRI suggested neuroanatomical connections between auditory cortex and sub-regions of the temporal and occipital lobe. However, the relationship between functional activity and white-matter tracks remained unclear. Here, we combined probabilistic tracking and functional MRI in order to reveal the structural connections related to auditory–visual object perception. Ten healthy people were examined by diffusion-weighted and functional MRI. During functional examinations they viewed either movies of lip or body movements, listened to corresponding sounds (phonological sounds or body action sounds), or a combination of both. We found that phonological sounds elicited stronger activity in the lateral superior temporal gyrus (STG) than body action sounds. Body movements elicited stronger activity in the lateral occipital cortex than lip movements. Functional activity in the phonological STG region and the lateral occipital body area were mutually modulated (sub-additive) by combined auditory–visual stimulation. Moreover, bimodal stimuli engaged a region in the posterior superior temporal sulcus (STS). Probabilistic tracking revealed white-matter tracks between the auditory cortex and sub-regions of the STS (anterior and posterior) and occipital cortex. The posterior STS region was also found to be relevant for auditory–visual object perception. The anterior STS region showed connections to the phonological STG area and to the lateral occipital body area. Our findings suggest that multisensory networks in the temporal lobe are best revealed by combining functional and structural measures.