时间和空间效率加权扣除

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Transactions of the Association for Computational Linguistics Pub Date : 2023-08-01 DOI:10.1162/tacl_a_00588
Jason Eisner
{"title":"时间和空间效率加权扣除","authors":"Jason Eisner","doi":"10.1162/tacl_a_00588","DOIUrl":null,"url":null,"abstract":"Abstract Many NLP algorithms have been described in terms of deduction systems. Unweighted deduction allows a generic forward-chaining execution strategy. For weighted deduction, however, efficient execution should propagate the weight of each item only after it has converged. This means visiting the items in topologically sorted order (as in dynamic programming). Toposorting is fast on a materialized graph; unfortunately, materializing the graph would take extra space. Is there a generic weighted deduction strategy which, for every acyclic deduction system and every input, uses only a constant factor more time and space than generic unweighted deduction? After reviewing past strategies, we answer this question in the affirmative by combining ideas of Goodman (1999) and Kahn (1962). We also give an extension to cyclic deduction systems, based on Tarjan (1972).","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"960-973"},"PeriodicalIF":4.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-and-Space-Efficient Weighted Deduction\",\"authors\":\"Jason Eisner\",\"doi\":\"10.1162/tacl_a_00588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many NLP algorithms have been described in terms of deduction systems. Unweighted deduction allows a generic forward-chaining execution strategy. For weighted deduction, however, efficient execution should propagate the weight of each item only after it has converged. This means visiting the items in topologically sorted order (as in dynamic programming). Toposorting is fast on a materialized graph; unfortunately, materializing the graph would take extra space. Is there a generic weighted deduction strategy which, for every acyclic deduction system and every input, uses only a constant factor more time and space than generic unweighted deduction? After reviewing past strategies, we answer this question in the affirmative by combining ideas of Goodman (1999) and Kahn (1962). We also give an extension to cyclic deduction systems, based on Tarjan (1972).\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"11 1\",\"pages\":\"960-973\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00588\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00588","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

许多NLP算法都是用演绎系统来描述的。非加权扣除允许通用前向链执行策略。然而,对于加权推导,有效的执行应该只在每个项收敛之后才传播其权重。这意味着以拓扑排序的顺序访问项目(如动态规划)。在物化图上拓扑排序速度快;不幸的是,物化图形将占用额外的空间。是否存在一种一般的加权演绎策略,对于每一个非循环演绎系统和每一个输入,只比一般的非加权演绎使用一个常数因子更多的时间和空间?在回顾了过去的策略之后,我们结合Goodman(1999)和Kahn(1962)的观点来肯定地回答这个问题。我们也在Tarjan(1972)的基础上对循环演绎系统进行了扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-and-Space-Efficient Weighted Deduction
Abstract Many NLP algorithms have been described in terms of deduction systems. Unweighted deduction allows a generic forward-chaining execution strategy. For weighted deduction, however, efficient execution should propagate the weight of each item only after it has converged. This means visiting the items in topologically sorted order (as in dynamic programming). Toposorting is fast on a materialized graph; unfortunately, materializing the graph would take extra space. Is there a generic weighted deduction strategy which, for every acyclic deduction system and every input, uses only a constant factor more time and space than generic unweighted deduction? After reviewing past strategies, we answer this question in the affirmative by combining ideas of Goodman (1999) and Kahn (1962). We also give an extension to cyclic deduction systems, based on Tarjan (1972).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
期刊最新文献
General then Personal: Decoupling and Pre-training for Personalized Headline Generation MissModal: Increasing Robustness to Missing Modality in Multimodal Sentiment Analysis Removing Backdoors in Pre-trained Models by Regularized Continual Pre-training Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations An Efficient Self-Supervised Cross-View Training For Sentence Embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1