自然语言处理技术的现状-使用自然语言处理技术的自然语言处理文献的系统自动回顾

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2023-07-03 DOI:10.1162/dint_a_00213
Jan Sawicki, M. Ganzha, M. Paprzycki
{"title":"自然语言处理技术的现状-使用自然语言处理技术的自然语言处理文献的系统自动回顾","authors":"Jan Sawicki, M. Ganzha, M. Paprzycki","doi":"10.1162/dint_a_00213","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nowadays, natural language processing (NLP) is one of the most popular areas of, broadly understood, artificial intelligence. Therefore, every day, new research contributions are posted, for instance, to the arXiv repository. Hence, it is rather difficult to capture the current “state of the field” and thus, to enter it. This brought the id-art NLP techniques to analyse the NLP-focused literature. As a result, (1) meta-level knowledge, concerning the current state of NLP has been captured, and (2) a guide to use of basic NLP tools is provided. It should be noted that all the tools and the dataset described in this contribution are publicly available. Furthermore, the originality of this review lies in its full automation. This allows easy reproducibility and continuation and updating of this research in the future as new researches emerge in the field of NLP.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"707-749"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The State of the Art of Natural Language Processing—A Systematic Automated Review of NLP Literature Using NLP Techniques\",\"authors\":\"Jan Sawicki, M. Ganzha, M. Paprzycki\",\"doi\":\"10.1162/dint_a_00213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Nowadays, natural language processing (NLP) is one of the most popular areas of, broadly understood, artificial intelligence. Therefore, every day, new research contributions are posted, for instance, to the arXiv repository. Hence, it is rather difficult to capture the current “state of the field” and thus, to enter it. This brought the id-art NLP techniques to analyse the NLP-focused literature. As a result, (1) meta-level knowledge, concerning the current state of NLP has been captured, and (2) a guide to use of basic NLP tools is provided. It should be noted that all the tools and the dataset described in this contribution are publicly available. Furthermore, the originality of this review lies in its full automation. This allows easy reproducibility and continuation and updating of this research in the future as new researches emerge in the field of NLP.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"5 1\",\"pages\":\"707-749\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00213\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00213","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

如今,自然语言处理(NLP)是人工智能中最受欢迎的、被广泛理解的领域之一。因此,每天都有新的研究成果发布,例如,发布到arXiv知识库。因此,捕捉当前的“领域状态”并进入它是相当困难的。这带来了id-art NLP技术来分析以NLP为重点的文献。因此,(1)获取了有关NLP现状的元级知识;(2)提供了基本NLP工具的使用指南。值得注意的是,本贡献中描述的所有工具和数据集都是公开的。此外,这项审查的独创性在于其完全自动化。随着NLP领域的新研究的出现,这使得本研究在未来的可重复性和延续和更新变得容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The State of the Art of Natural Language Processing—A Systematic Automated Review of NLP Literature Using NLP Techniques
ABSTRACT Nowadays, natural language processing (NLP) is one of the most popular areas of, broadly understood, artificial intelligence. Therefore, every day, new research contributions are posted, for instance, to the arXiv repository. Hence, it is rather difficult to capture the current “state of the field” and thus, to enter it. This brought the id-art NLP techniques to analyse the NLP-focused literature. As a result, (1) meta-level knowledge, concerning the current state of NLP has been captured, and (2) a guide to use of basic NLP tools is provided. It should be noted that all the tools and the dataset described in this contribution are publicly available. Furthermore, the originality of this review lies in its full automation. This allows easy reproducibility and continuation and updating of this research in the future as new researches emerge in the field of NLP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1