小型轨道车辆车厢火灾的数值研究

X. Hu, Zhaozhi Wang, F. Jia, E. Galea
{"title":"小型轨道车辆车厢火灾的数值研究","authors":"X. Hu, Zhaozhi Wang, F. Jia, E. Galea","doi":"10.1177/1042391512459640","DOIUrl":null,"url":null,"abstract":"In this article, an enhanced flame spread model is used to simulate a rail car compartment fire test. The model was found to be able to reproduce the following experiential results: the predicted progressive burning locations are consistent with the experimental record; the predicted temperatures and heat fluxes at various locations essentially follow the measured trends; and the predicted onset of flashover is within 9% of the measured time of 180 s. The sensitivity of the predicted time to flashover is assessed using 18 fire scenarios in which the uncertainties in the measured material properties are systematically examined. The time to flashover is found to be most sensitive to changes in seat material properties. For the investigated rail car compartment, the impact of porosity of the overhead luggage rack structure on time to flashover is also examined and found to be significant for small ignition source fires. Language: en","PeriodicalId":50192,"journal":{"name":"Journal of Fire Protection Engineering","volume":"22 1","pages":"245-270"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1042391512459640","citationCount":"12","resultStr":"{\"title\":\"Numerical investigation of fires in small rail car compartments\",\"authors\":\"X. Hu, Zhaozhi Wang, F. Jia, E. Galea\",\"doi\":\"10.1177/1042391512459640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an enhanced flame spread model is used to simulate a rail car compartment fire test. The model was found to be able to reproduce the following experiential results: the predicted progressive burning locations are consistent with the experimental record; the predicted temperatures and heat fluxes at various locations essentially follow the measured trends; and the predicted onset of flashover is within 9% of the measured time of 180 s. The sensitivity of the predicted time to flashover is assessed using 18 fire scenarios in which the uncertainties in the measured material properties are systematically examined. The time to flashover is found to be most sensitive to changes in seat material properties. For the investigated rail car compartment, the impact of porosity of the overhead luggage rack structure on time to flashover is also examined and found to be significant for small ignition source fires. Language: en\",\"PeriodicalId\":50192,\"journal\":{\"name\":\"Journal of Fire Protection Engineering\",\"volume\":\"22 1\",\"pages\":\"245-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1042391512459640\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Protection Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1042391512459640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Protection Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1042391512459640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文采用一种增强的火焰蔓延模型,对轨道车辆车厢的火灾试验进行了模拟。实验结果表明,该模型能较好地再现以下经验结果:预测的进行性燃烧位置与实验记录一致;各地点的预测温度和热通量基本符合实测趋势;预测的闪络发生时间在实测时间(180s)的9%以内。预测时间对闪络的敏感性采用18种火灾情景进行了评估,其中系统地检查了测量材料特性的不确定性。发现闪络时间对阀座材料性能的变化最为敏感。对于所研究的轨道车辆车厢,还研究了顶置行李架结构孔隙率对闪络时间的影响,发现在小火源火灾中,孔隙率对闪络时间的影响是显著的。语言:在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of fires in small rail car compartments
In this article, an enhanced flame spread model is used to simulate a rail car compartment fire test. The model was found to be able to reproduce the following experiential results: the predicted progressive burning locations are consistent with the experimental record; the predicted temperatures and heat fluxes at various locations essentially follow the measured trends; and the predicted onset of flashover is within 9% of the measured time of 180 s. The sensitivity of the predicted time to flashover is assessed using 18 fire scenarios in which the uncertainties in the measured material properties are systematically examined. The time to flashover is found to be most sensitive to changes in seat material properties. For the investigated rail car compartment, the impact of porosity of the overhead luggage rack structure on time to flashover is also examined and found to be significant for small ignition source fires. Language: en
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fire Protection Engineering
Journal of Fire Protection Engineering 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Underground Fire Mains Other Detection and Alarm Devices Hydraulic Calculations of Sprinkler Systems Dry-Agent Automatic Suppression Systems Unwanted Fire and Fire Growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1