{"title":"综合研究:新冠肺炎诊断的机器学习方法","authors":"Amir Nasir Hussein, S. Makki, A. Al-Sabbagh","doi":"10.11591/ijece.v13i5.pp5681-5695","DOIUrl":null,"url":null,"abstract":"Coronavirus disease 2019 (COVID-19) is caused a large number of death since has declared as an international pandemic in December 2019, and it is spreading all over the world (more than 200 countries). This situation puts the health organizations in an aberrant demand for urgent needs to develop significant early detection and monitoring smart solutions. Therefore, that new system or solution might be capable to identify COVID-19 quickly and accurately. Nowadays, the science of artificial intelligence (AI), and internet of things (IoT) techniques have an extensive range of applications, it can be initiated a possible solution for early detection and accurate decisions. We believe, combine both of the IoT revolution and machine learning (ML) methods are expected to reshape healthcare treatment strategies to provide smart (diagnosis, treatments, monitoring, and hospitals). This work aims to overview the recent solutions that have been used for early detection, and to provide the researchers a comprehensive summary that contribute to the pandemic control such AI, IoT, cloud, fog, algorithms, and all the dataset and their sources that recently published. In addition, all models, frameworks, monitoring systems, devices, and ideas (in four sections) have been sufficiently presented with all clarifications and justifications. Also, we propose a new vision for early detection based on IoT sensors data entry using 1 million patients-data to verify three proposed methods.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study: machine learning approaches for COVID-19 diagnosis\",\"authors\":\"Amir Nasir Hussein, S. Makki, A. Al-Sabbagh\",\"doi\":\"10.11591/ijece.v13i5.pp5681-5695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus disease 2019 (COVID-19) is caused a large number of death since has declared as an international pandemic in December 2019, and it is spreading all over the world (more than 200 countries). This situation puts the health organizations in an aberrant demand for urgent needs to develop significant early detection and monitoring smart solutions. Therefore, that new system or solution might be capable to identify COVID-19 quickly and accurately. Nowadays, the science of artificial intelligence (AI), and internet of things (IoT) techniques have an extensive range of applications, it can be initiated a possible solution for early detection and accurate decisions. We believe, combine both of the IoT revolution and machine learning (ML) methods are expected to reshape healthcare treatment strategies to provide smart (diagnosis, treatments, monitoring, and hospitals). This work aims to overview the recent solutions that have been used for early detection, and to provide the researchers a comprehensive summary that contribute to the pandemic control such AI, IoT, cloud, fog, algorithms, and all the dataset and their sources that recently published. In addition, all models, frameworks, monitoring systems, devices, and ideas (in four sections) have been sufficiently presented with all clarifications and justifications. Also, we propose a new vision for early detection based on IoT sensors data entry using 1 million patients-data to verify three proposed methods.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5681-5695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5681-5695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Comprehensive study: machine learning approaches for COVID-19 diagnosis
Coronavirus disease 2019 (COVID-19) is caused a large number of death since has declared as an international pandemic in December 2019, and it is spreading all over the world (more than 200 countries). This situation puts the health organizations in an aberrant demand for urgent needs to develop significant early detection and monitoring smart solutions. Therefore, that new system or solution might be capable to identify COVID-19 quickly and accurately. Nowadays, the science of artificial intelligence (AI), and internet of things (IoT) techniques have an extensive range of applications, it can be initiated a possible solution for early detection and accurate decisions. We believe, combine both of the IoT revolution and machine learning (ML) methods are expected to reshape healthcare treatment strategies to provide smart (diagnosis, treatments, monitoring, and hospitals). This work aims to overview the recent solutions that have been used for early detection, and to provide the researchers a comprehensive summary that contribute to the pandemic control such AI, IoT, cloud, fog, algorithms, and all the dataset and their sources that recently published. In addition, all models, frameworks, monitoring systems, devices, and ideas (in four sections) have been sufficiently presented with all clarifications and justifications. Also, we propose a new vision for early detection based on IoT sensors data entry using 1 million patients-data to verify three proposed methods.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]