综合研究:新冠肺炎诊断的机器学习方法

Amir Nasir Hussein, S. Makki, A. Al-Sabbagh
{"title":"综合研究:新冠肺炎诊断的机器学习方法","authors":"Amir Nasir Hussein, S. Makki, A. Al-Sabbagh","doi":"10.11591/ijece.v13i5.pp5681-5695","DOIUrl":null,"url":null,"abstract":"Coronavirus disease 2019 (COVID-19) is caused a large number of death since has declared as an international pandemic in December 2019, and it is spreading all over the world (more than 200 countries). This situation puts the health organizations in an aberrant demand for urgent needs to develop significant early detection and monitoring smart solutions. Therefore, that new system or solution might be capable to identify COVID-19 quickly and accurately. Nowadays, the science of artificial intelligence (AI), and internet of things (IoT) techniques have an extensive range of applications, it can be initiated a possible solution for early detection and accurate decisions. We believe, combine both of the IoT revolution and machine learning (ML) methods are expected to reshape healthcare treatment strategies to provide smart (diagnosis, treatments, monitoring, and hospitals). This work aims to overview the recent solutions that have been used for early detection, and to provide the researchers a comprehensive summary that contribute to the pandemic control such AI, IoT, cloud, fog, algorithms, and all the dataset and their sources that recently published. In addition, all models, frameworks, monitoring systems, devices, and ideas (in four sections) have been sufficiently presented with all clarifications and justifications. Also, we propose a new vision for early detection based on IoT sensors data entry using 1 million patients-data to verify three proposed methods.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study: machine learning approaches for COVID-19 diagnosis\",\"authors\":\"Amir Nasir Hussein, S. Makki, A. Al-Sabbagh\",\"doi\":\"10.11591/ijece.v13i5.pp5681-5695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus disease 2019 (COVID-19) is caused a large number of death since has declared as an international pandemic in December 2019, and it is spreading all over the world (more than 200 countries). This situation puts the health organizations in an aberrant demand for urgent needs to develop significant early detection and monitoring smart solutions. Therefore, that new system or solution might be capable to identify COVID-19 quickly and accurately. Nowadays, the science of artificial intelligence (AI), and internet of things (IoT) techniques have an extensive range of applications, it can be initiated a possible solution for early detection and accurate decisions. We believe, combine both of the IoT revolution and machine learning (ML) methods are expected to reshape healthcare treatment strategies to provide smart (diagnosis, treatments, monitoring, and hospitals). This work aims to overview the recent solutions that have been used for early detection, and to provide the researchers a comprehensive summary that contribute to the pandemic control such AI, IoT, cloud, fog, algorithms, and all the dataset and their sources that recently published. In addition, all models, frameworks, monitoring systems, devices, and ideas (in four sections) have been sufficiently presented with all clarifications and justifications. Also, we propose a new vision for early detection based on IoT sensors data entry using 1 million patients-data to verify three proposed methods.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5681-5695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5681-5695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病(COVID-19)自2019年12月被宣布为国际大流行以来,已造成大量死亡,并正在全球(200多个国家)蔓延。这种情况使卫生组织迫切需要制定重要的早期发现和监测智能解决方案。因此,新系统或解决方案可能能够快速准确地识别COVID-19。如今,人工智能(AI)科学和物联网(IoT)技术有着广泛的应用,它可以为早期发现和准确决策提供可能的解决方案。我们相信,物联网革命和机器学习(ML)方法的结合有望重塑医疗保健治疗策略,以提供智能(诊断、治疗、监测和医院)。这项工作旨在概述最近用于早期检测的解决方案,并为研究人员提供AI,物联网,云,雾,算法以及最近发表的所有数据集及其来源等有助于控制大流行的综合总结。此外,所有的模型、框架、监控系统、设备和想法(在四个部分中)都已经被充分地阐明和论证了。此外,我们提出了一个基于物联网传感器数据输入的早期检测的新愿景,使用100万患者数据来验证所提出的三种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive study: machine learning approaches for COVID-19 diagnosis
Coronavirus disease 2019 (COVID-19) is caused a large number of death since has declared as an international pandemic in December 2019, and it is spreading all over the world (more than 200 countries). This situation puts the health organizations in an aberrant demand for urgent needs to develop significant early detection and monitoring smart solutions. Therefore, that new system or solution might be capable to identify COVID-19 quickly and accurately. Nowadays, the science of artificial intelligence (AI), and internet of things (IoT) techniques have an extensive range of applications, it can be initiated a possible solution for early detection and accurate decisions. We believe, combine both of the IoT revolution and machine learning (ML) methods are expected to reshape healthcare treatment strategies to provide smart (diagnosis, treatments, monitoring, and hospitals). This work aims to overview the recent solutions that have been used for early detection, and to provide the researchers a comprehensive summary that contribute to the pandemic control such AI, IoT, cloud, fog, algorithms, and all the dataset and their sources that recently published. In addition, all models, frameworks, monitoring systems, devices, and ideas (in four sections) have been sufficiently presented with all clarifications and justifications. Also, we propose a new vision for early detection based on IoT sensors data entry using 1 million patients-data to verify three proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1