S. Madhusudhanan, S. Jaganathan, Dattuluri Venkatavara Prasad
{"title":"用于异构图像增量学习的卷积自编码极限学习机","authors":"S. Madhusudhanan, S. Jaganathan, Dattuluri Venkatavara Prasad","doi":"10.11591/ijece.v13i5.pp5853-5864","DOIUrl":null,"url":null,"abstract":"In real-world scenarios, a system's continual updating of learning knowledge becomes more critical as the data grows faster, producing vast volumes of data. Moreover, the learning process becomes complex when the data features become varied due to the addition or deletion of classes. In such cases, the generated model should learn effectively. Incremental learning refers to the learning of data which constantly arrives over time. This learning requires continuous model adaptation but with limited memory resources without sacrificing model accuracy. In this paper, we proposed a straightforward knowledge transfer algorithm (convolutional auto-encoded extreme learning machine (CAE-ELM)) implemented through the incremental learning methodology for the task of supervised classification using an extreme learning machine (ELM). Incremental learning is achieved by creating an individual train model for each set of homogeneous data and incorporating the knowledge transfer among the models without sacrificing accuracy with minimal memory resources. In CAE-ELM, convolutional neural network (CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and ELM learns and classifies the images. Our proposed algorithm is implemented and experimented on various standard datasets: MNIST, ORL, JAFFE, FERET and Caltech. The results show a positive sign of the correctness of the proposed algorithm.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional auto-encoded extreme learning machine for incremental learning of heterogeneous images\",\"authors\":\"S. Madhusudhanan, S. Jaganathan, Dattuluri Venkatavara Prasad\",\"doi\":\"10.11591/ijece.v13i5.pp5853-5864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real-world scenarios, a system's continual updating of learning knowledge becomes more critical as the data grows faster, producing vast volumes of data. Moreover, the learning process becomes complex when the data features become varied due to the addition or deletion of classes. In such cases, the generated model should learn effectively. Incremental learning refers to the learning of data which constantly arrives over time. This learning requires continuous model adaptation but with limited memory resources without sacrificing model accuracy. In this paper, we proposed a straightforward knowledge transfer algorithm (convolutional auto-encoded extreme learning machine (CAE-ELM)) implemented through the incremental learning methodology for the task of supervised classification using an extreme learning machine (ELM). Incremental learning is achieved by creating an individual train model for each set of homogeneous data and incorporating the knowledge transfer among the models without sacrificing accuracy with minimal memory resources. In CAE-ELM, convolutional neural network (CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and ELM learns and classifies the images. Our proposed algorithm is implemented and experimented on various standard datasets: MNIST, ORL, JAFFE, FERET and Caltech. The results show a positive sign of the correctness of the proposed algorithm.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5853-5864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5853-5864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Convolutional auto-encoded extreme learning machine for incremental learning of heterogeneous images
In real-world scenarios, a system's continual updating of learning knowledge becomes more critical as the data grows faster, producing vast volumes of data. Moreover, the learning process becomes complex when the data features become varied due to the addition or deletion of classes. In such cases, the generated model should learn effectively. Incremental learning refers to the learning of data which constantly arrives over time. This learning requires continuous model adaptation but with limited memory resources without sacrificing model accuracy. In this paper, we proposed a straightforward knowledge transfer algorithm (convolutional auto-encoded extreme learning machine (CAE-ELM)) implemented through the incremental learning methodology for the task of supervised classification using an extreme learning machine (ELM). Incremental learning is achieved by creating an individual train model for each set of homogeneous data and incorporating the knowledge transfer among the models without sacrificing accuracy with minimal memory resources. In CAE-ELM, convolutional neural network (CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and ELM learns and classifies the images. Our proposed algorithm is implemented and experimented on various standard datasets: MNIST, ORL, JAFFE, FERET and Caltech. The results show a positive sign of the correctness of the proposed algorithm.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]