Lyudmila Kriklya, Kostyantyn Korniyenko, Vasyl’ Petyukh, Irina Tikhonova, Anatoliy Samelyuk, Viktor Sobolev, Petro Levchenko
{"title":"Hf-Rh-Ir体系的固相表面","authors":"Lyudmila Kriklya, Kostyantyn Korniyenko, Vasyl’ Petyukh, Irina Tikhonova, Anatoliy Samelyuk, Viktor Sobolev, Petro Levchenko","doi":"10.1007/s11669-023-01046-y","DOIUrl":null,"url":null,"abstract":"<div><p>Phase equilibria in the Hf–Rh–Ir system at subsolidus temperatures (about 20-50 °C below solidus temperatures) were studied using optical microscopy, scanning electron microscopy, electron probe microanalysis, differential thermal analysis, x-ray diffraction and solidus temperature measurements (Pirani-Althertum technique). For the first time it was established that the solid solution based on βHf, continuous series of solid solutions between isostructural (Cu-type) components iridium and rhodium, isostructural compounds Hf<sub>2</sub>Rh and Hf<sub>2</sub>Ir (Ti<sub>2</sub>Ni-type), high-temperature modifications of HfRh and HfIr (CsCl-type), HfRh<sub>3</sub> and HfIr<sub>3</sub> (AuCu<sub>3</sub>-type), as well as solid solutions based on the compounds Hf<sub>5</sub>Ir<sub>3</sub> and Hf<sub>3</sub>Rh<sub>5</sub> take part in phase equilibria. Solidus surface of this system is formed by seven single-phase surfaces corresponding to solid solutions based on components and above-mentioned compounds, eight tie-line surfaces limiting the two-phase volumes, and two isothermal planes corresponding to invariant four-phase equilibria with participation of the liquid phase (at 1958 and 1655 °C).</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"44 3","pages":"394 - 407"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solidus Surface of the Hf–Rh–Ir System\",\"authors\":\"Lyudmila Kriklya, Kostyantyn Korniyenko, Vasyl’ Petyukh, Irina Tikhonova, Anatoliy Samelyuk, Viktor Sobolev, Petro Levchenko\",\"doi\":\"10.1007/s11669-023-01046-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phase equilibria in the Hf–Rh–Ir system at subsolidus temperatures (about 20-50 °C below solidus temperatures) were studied using optical microscopy, scanning electron microscopy, electron probe microanalysis, differential thermal analysis, x-ray diffraction and solidus temperature measurements (Pirani-Althertum technique). For the first time it was established that the solid solution based on βHf, continuous series of solid solutions between isostructural (Cu-type) components iridium and rhodium, isostructural compounds Hf<sub>2</sub>Rh and Hf<sub>2</sub>Ir (Ti<sub>2</sub>Ni-type), high-temperature modifications of HfRh and HfIr (CsCl-type), HfRh<sub>3</sub> and HfIr<sub>3</sub> (AuCu<sub>3</sub>-type), as well as solid solutions based on the compounds Hf<sub>5</sub>Ir<sub>3</sub> and Hf<sub>3</sub>Rh<sub>5</sub> take part in phase equilibria. Solidus surface of this system is formed by seven single-phase surfaces corresponding to solid solutions based on components and above-mentioned compounds, eight tie-line surfaces limiting the two-phase volumes, and two isothermal planes corresponding to invariant four-phase equilibria with participation of the liquid phase (at 1958 and 1655 °C).</p></div>\",\"PeriodicalId\":657,\"journal\":{\"name\":\"Journal of Phase Equilibria and Diffusion\",\"volume\":\"44 3\",\"pages\":\"394 - 407\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phase Equilibria and Diffusion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11669-023-01046-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-023-01046-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Phase equilibria in the Hf–Rh–Ir system at subsolidus temperatures (about 20-50 °C below solidus temperatures) were studied using optical microscopy, scanning electron microscopy, electron probe microanalysis, differential thermal analysis, x-ray diffraction and solidus temperature measurements (Pirani-Althertum technique). For the first time it was established that the solid solution based on βHf, continuous series of solid solutions between isostructural (Cu-type) components iridium and rhodium, isostructural compounds Hf2Rh and Hf2Ir (Ti2Ni-type), high-temperature modifications of HfRh and HfIr (CsCl-type), HfRh3 and HfIr3 (AuCu3-type), as well as solid solutions based on the compounds Hf5Ir3 and Hf3Rh5 take part in phase equilibria. Solidus surface of this system is formed by seven single-phase surfaces corresponding to solid solutions based on components and above-mentioned compounds, eight tie-line surfaces limiting the two-phase volumes, and two isothermal planes corresponding to invariant four-phase equilibria with participation of the liquid phase (at 1958 and 1655 °C).
期刊介绍:
The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts.
The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use.
Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.