{"title":"圆柱界面瑞利-泰勒不稳定性和开尔文-亥姆霍兹不稳定性的螺旋模态","authors":"M. Vadivukkarasan, M. Panchagnula","doi":"10.1177/1756827716642159","DOIUrl":null,"url":null,"abstract":"The effect of competing Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of instability applied to a cylindrical two-fluid interface is discussed. A three-dimensional temporal linear stability model for the instability growth is developed based on the frozen time approximation. The fluids are assumed to be inviscid and incompressible. From the governing equations and the boundary conditions, a dispersion relation is derived and analyzed for instability. Four different regimes have been shown to be possible, based on the most unstable axial and circumferential wavenumbers. The four modes are the Taylor mode, the sinuous mode, the flute mode and long and short wavelength helical modes. The effect of Bond number, Weber number, and density ratio are investigated in the context of the mode chosen. It is found that Bond number is the primary determinant of the neutral stability while Weber number plays a key role in identifying the instability mode that is manifest. A regime map is presented to delineate the modes realized for a given set of flow parameter values. From this regime map, a short wavelength helical mode is identified which is shown to result only when both the Rayleigh–Taylor and Kelvin–Helmholtz instability mechanisms are active. A scaling law for the magnitude of the wavenumber vector as a function of Bond number and Weber number are also developed. A length scale is defined to characterize the interface distortion. Using this length scale, the set of conditions where the interface exhibits a maximum in surface area creation is identified. With the objective of achieving the smallest characteristic length scale of interface distortion, a criterion to optimally budget mean flow energy is also proposed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827716642159","citationCount":"17","resultStr":"{\"title\":\"Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface\",\"authors\":\"M. Vadivukkarasan, M. Panchagnula\",\"doi\":\"10.1177/1756827716642159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of competing Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of instability applied to a cylindrical two-fluid interface is discussed. A three-dimensional temporal linear stability model for the instability growth is developed based on the frozen time approximation. The fluids are assumed to be inviscid and incompressible. From the governing equations and the boundary conditions, a dispersion relation is derived and analyzed for instability. Four different regimes have been shown to be possible, based on the most unstable axial and circumferential wavenumbers. The four modes are the Taylor mode, the sinuous mode, the flute mode and long and short wavelength helical modes. The effect of Bond number, Weber number, and density ratio are investigated in the context of the mode chosen. It is found that Bond number is the primary determinant of the neutral stability while Weber number plays a key role in identifying the instability mode that is manifest. A regime map is presented to delineate the modes realized for a given set of flow parameter values. From this regime map, a short wavelength helical mode is identified which is shown to result only when both the Rayleigh–Taylor and Kelvin–Helmholtz instability mechanisms are active. A scaling law for the magnitude of the wavenumber vector as a function of Bond number and Weber number are also developed. A length scale is defined to characterize the interface distortion. Using this length scale, the set of conditions where the interface exhibits a maximum in surface area creation is identified. With the objective of achieving the smallest characteristic length scale of interface distortion, a criterion to optimally budget mean flow energy is also proposed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756827716642159\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756827716642159\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756827716642159","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface
The effect of competing Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of instability applied to a cylindrical two-fluid interface is discussed. A three-dimensional temporal linear stability model for the instability growth is developed based on the frozen time approximation. The fluids are assumed to be inviscid and incompressible. From the governing equations and the boundary conditions, a dispersion relation is derived and analyzed for instability. Four different regimes have been shown to be possible, based on the most unstable axial and circumferential wavenumbers. The four modes are the Taylor mode, the sinuous mode, the flute mode and long and short wavelength helical modes. The effect of Bond number, Weber number, and density ratio are investigated in the context of the mode chosen. It is found that Bond number is the primary determinant of the neutral stability while Weber number plays a key role in identifying the instability mode that is manifest. A regime map is presented to delineate the modes realized for a given set of flow parameter values. From this regime map, a short wavelength helical mode is identified which is shown to result only when both the Rayleigh–Taylor and Kelvin–Helmholtz instability mechanisms are active. A scaling law for the magnitude of the wavenumber vector as a function of Bond number and Weber number are also developed. A length scale is defined to characterize the interface distortion. Using this length scale, the set of conditions where the interface exhibits a maximum in surface area creation is identified. With the objective of achieving the smallest characteristic length scale of interface distortion, a criterion to optimally budget mean flow energy is also proposed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.