{"title":"XGBoost在不平衡数据中的研究与应用","authors":"Ping Zhang, Yiqiao Jia, Youlin Shang","doi":"10.1177/15501329221106935","DOIUrl":null,"url":null,"abstract":"As a new and efficient ensemble learning algorithm, XGBoost has been widely applied for its multitudinous advantages, but its classification effect in the case of data imbalance is often not ideal. Aiming at this problem, an attempt was made to optimize the regularization term of XGBoost, and a classification algorithm based on mixed sampling and ensemble learning is proposed. The main idea is to combine SVM-SMOTE over-sampling and EasyEnsemble under-sampling technologies for data processing, and then obtain the final model based on XGBoost by training and ensemble. At the same time, the optimal parameters are automatically searched and adjusted through the Bayesian optimization algorithm to realize classification prediction. In the experimental stage, the G-mean and area under the curve (AUC) values are used as evaluation indicators to compare and analyze the classification performance of different sampling methods and algorithm models. The experimental results on the public data set also verify the feasibility and effectiveness of the proposed algorithm.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Research and application of XGBoost in imbalanced data\",\"authors\":\"Ping Zhang, Yiqiao Jia, Youlin Shang\",\"doi\":\"10.1177/15501329221106935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new and efficient ensemble learning algorithm, XGBoost has been widely applied for its multitudinous advantages, but its classification effect in the case of data imbalance is often not ideal. Aiming at this problem, an attempt was made to optimize the regularization term of XGBoost, and a classification algorithm based on mixed sampling and ensemble learning is proposed. The main idea is to combine SVM-SMOTE over-sampling and EasyEnsemble under-sampling technologies for data processing, and then obtain the final model based on XGBoost by training and ensemble. At the same time, the optimal parameters are automatically searched and adjusted through the Bayesian optimization algorithm to realize classification prediction. In the experimental stage, the G-mean and area under the curve (AUC) values are used as evaluation indicators to compare and analyze the classification performance of different sampling methods and algorithm models. The experimental results on the public data set also verify the feasibility and effectiveness of the proposed algorithm.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221106935\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221106935","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 13
摘要
作为一种新型高效的集成学习算法,XGBoost以其众多的优点得到了广泛的应用,但其在数据不平衡情况下的分类效果往往并不理想。针对这一问题,尝试对XGBoost的正则化项进行优化,提出了一种基于混合采样和集成学习的分类算法。主要思想是将SVM-SMOTE过采样和EasyEnsemble欠采样技术结合起来进行数据处理,然后通过训练和集成得到基于XGBoost的最终模型。同时,通过贝叶斯优化算法自动搜索和调整最优参数,实现分类预测。在实验阶段,以g均值和曲线下面积(area under the curve, AUC)值作为评价指标,对比分析不同采样方法和算法模型的分类性能。在公共数据集上的实验结果也验证了该算法的可行性和有效性。
Research and application of XGBoost in imbalanced data
As a new and efficient ensemble learning algorithm, XGBoost has been widely applied for its multitudinous advantages, but its classification effect in the case of data imbalance is often not ideal. Aiming at this problem, an attempt was made to optimize the regularization term of XGBoost, and a classification algorithm based on mixed sampling and ensemble learning is proposed. The main idea is to combine SVM-SMOTE over-sampling and EasyEnsemble under-sampling technologies for data processing, and then obtain the final model based on XGBoost by training and ensemble. At the same time, the optimal parameters are automatically searched and adjusted through the Bayesian optimization algorithm to realize classification prediction. In the experimental stage, the G-mean and area under the curve (AUC) values are used as evaluation indicators to compare and analyze the classification performance of different sampling methods and algorithm models. The experimental results on the public data set also verify the feasibility and effectiveness of the proposed algorithm.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.