基于融合的分类方法及其应用

IF 0.3 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Journal of Seismic Exploration Pub Date : 2007-01-01 DOI:10.1190/1.2792784
Long Jin, Mrinal K. Sen, P. Stoffa
{"title":"基于融合的分类方法及其应用","authors":"Long Jin, Mrinal K. Sen, P. Stoffa","doi":"10.1190/1.2792784","DOIUrl":null,"url":null,"abstract":"Summary Classification algorithms have many applications both in exploration and production seismology. Many classification algorithms have been reported in the literature, such as, seismic facies identification, lithology/fluid prediction, etc. However, improper choice of an algorithm and parameters for a specific problem will create incorrect classification results. Here, we elaborate on some of these issues. Further, we propose combing multiple classifiers with DempsterShafer theory (DS) to increase the accuracy of the classification. The philosophy of our approach is that different classifiers may offer complementary information about the patterns to be classified, combining classifiers in an efficient way can achieve better classification results than any single classifier. The effectiveness of this method is demonstrated with a synthetic data test.","PeriodicalId":50054,"journal":{"name":"Journal of Seismic Exploration","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fusion Based Classification Method And Its Application\",\"authors\":\"Long Jin, Mrinal K. Sen, P. Stoffa\",\"doi\":\"10.1190/1.2792784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Classification algorithms have many applications both in exploration and production seismology. Many classification algorithms have been reported in the literature, such as, seismic facies identification, lithology/fluid prediction, etc. However, improper choice of an algorithm and parameters for a specific problem will create incorrect classification results. Here, we elaborate on some of these issues. Further, we propose combing multiple classifiers with DempsterShafer theory (DS) to increase the accuracy of the classification. The philosophy of our approach is that different classifiers may offer complementary information about the patterns to be classified, combining classifiers in an efficient way can achieve better classification results than any single classifier. The effectiveness of this method is demonstrated with a synthetic data test.\",\"PeriodicalId\":50054,\"journal\":{\"name\":\"Journal of Seismic Exploration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Seismic Exploration\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/1.2792784\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismic Exploration","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/1.2792784","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

分类算法在勘探和生产地震学中都有广泛的应用。文献中已经报道了许多分类算法,如地震相识别、岩性/流体预测等。然而,针对特定问题选择不当的算法和参数会产生错误的分类结果。在这里,我们详细阐述其中的一些问题。进一步,我们提出结合DempsterShafer理论(DS)对多个分类器进行组合,以提高分类的准确率。我们方法的理念是,不同的分类器可以提供关于要分类的模式的互补信息,以有效的方式组合分类器可以获得比任何单一分类器更好的分类结果。通过综合数据试验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion Based Classification Method And Its Application
Summary Classification algorithms have many applications both in exploration and production seismology. Many classification algorithms have been reported in the literature, such as, seismic facies identification, lithology/fluid prediction, etc. However, improper choice of an algorithm and parameters for a specific problem will create incorrect classification results. Here, we elaborate on some of these issues. Further, we propose combing multiple classifiers with DempsterShafer theory (DS) to increase the accuracy of the classification. The philosophy of our approach is that different classifiers may offer complementary information about the patterns to be classified, combining classifiers in an efficient way can achieve better classification results than any single classifier. The effectiveness of this method is demonstrated with a synthetic data test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Seismic Exploration
Journal of Seismic Exploration 地学-地球化学与地球物理
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: The Journal of Seismic Exploration is an international medium for the publication of research in seismic modeling, processing, inversion, interpretation, field techniques, borehole techniques, tomography, instrumentation and software.
期刊最新文献
Estimating seismic dispersion from prestack data using frequency-dependent AVO analysis Fusion Based Classification Method And Its Application Predictive deconvolution by frequency domain Wiener filtering Estimation of effective pressure and water saturation by viscoelastic inversion of synthetic time-lapse seismic data for a gas sandstone reservoir Multiple Attenuation In the Plane Wave Domain By Match Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1