一条大激流河中的空气-水氧交换

Robert O. Hall Jr., Theodore A. Kennedy, Emma J. Rosi-Marshall
{"title":"一条大激流河中的空气-水氧交换","authors":"Robert O. Hall Jr.,&nbsp;Theodore A. Kennedy,&nbsp;Emma J. Rosi-Marshall","doi":"10.1215/21573689-1572535","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Air–water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O<sub>2</sub>) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O<sub>2</sub> saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O<sub>2</sub> saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (<i>k</i><sub>600</sub>) increased with slope of the immediate reach. <i>k</i><sub>600</sub> was &lt; 10 cm h<sup>− 1</sup> in flat reaches, while <i>k</i><sub>600</sub> for the steepest rapid ranged 3600–7700 cm h<sup>− 1</sup>, an extremely high value of <i>k</i><sub>600</sub>. Using the rate of gas exchange per unit length of water surface elevation (<i>K</i><sub>drop</sub>, m<sup>− 1</sup>), segment-integrated <i>k</i><sub>600</sub> varied between 74 and 101 cm h<sup>− 1</sup>. Using <i>K</i><sub>drop</sub> we scaled <i>k</i><sub>600</sub> to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O<sub>2</sub> exchanged with the atmosphere (mean length = 26.1 km), <i>k</i><sub>600</sub> varied 4.5-fold between 56 and 272 cm h<sup>− 1</sup> with a mean of 113 cm h<sup>− 1</sup>. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling <i>k</i><sub>600</sub> based on <i>K</i><sub>drop</sub> allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.</p>\n </div>","PeriodicalId":100878,"journal":{"name":"Limnology and Oceanography: Fluids and Environments","volume":"2 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21573689-1572535","citationCount":"36","resultStr":"{\"title\":\"Air–water oxygen exchange in a large whitewater river\",\"authors\":\"Robert O. Hall Jr.,&nbsp;Theodore A. Kennedy,&nbsp;Emma J. Rosi-Marshall\",\"doi\":\"10.1215/21573689-1572535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Air–water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O<sub>2</sub>) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O<sub>2</sub> saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O<sub>2</sub> saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (<i>k</i><sub>600</sub>) increased with slope of the immediate reach. <i>k</i><sub>600</sub> was &lt; 10 cm h<sup>− 1</sup> in flat reaches, while <i>k</i><sub>600</sub> for the steepest rapid ranged 3600–7700 cm h<sup>− 1</sup>, an extremely high value of <i>k</i><sub>600</sub>. Using the rate of gas exchange per unit length of water surface elevation (<i>K</i><sub>drop</sub>, m<sup>− 1</sup>), segment-integrated <i>k</i><sub>600</sub> varied between 74 and 101 cm h<sup>− 1</sup>. Using <i>K</i><sub>drop</sub> we scaled <i>k</i><sub>600</sub> to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O<sub>2</sub> exchanged with the atmosphere (mean length = 26.1 km), <i>k</i><sub>600</sub> varied 4.5-fold between 56 and 272 cm h<sup>− 1</sup> with a mean of 113 cm h<sup>− 1</sup>. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling <i>k</i><sub>600</sub> based on <i>K</i><sub>drop</sub> allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.</p>\\n </div>\",\"PeriodicalId\":100878,\"journal\":{\"name\":\"Limnology and Oceanography: Fluids and Environments\",\"volume\":\"2 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/21573689-1572535\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Fluids and Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1215/21573689-1572535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Fluids and Environments","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1215/21573689-1572535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

空气-水-气体交换控制着进出水生生态系统的气体通量。了解这种通量对于计算气体收支(即O2)以估计整个生态系统代谢和流域尺度的碳收支是必要的。关于溪流、河口和海洋的气体交换率的经验数据是现成的。然而,大河的数据很少,激流急流的数据也没有。我们测量了科罗拉多河,大峡谷的气体传输速度,随着O2饱和度赤字的下降,在28公里的区段跨越7个急流,测量了7次。由于位于利斯渡口上游25公里处的格伦峡谷大坝的低通量排放,氧气饱和度赤字存在。气体传递速度(k600)随直接河段坡度的增大而增大。K600是<而k600的最陡快速范围为3600 ~ 7700 cm h−1,k600的值非常高。利用每单位水面高度长度的气体交换速率(Kdrop, m−1),分段集成的k600在74 ~ 101 cm h−1之间变化。使用Kdrop,我们将k600扩展到大峡谷科罗拉多河的剩余部分。在对应于80%的O2与大气交换的区段长度的尺度上(平均长度为26.1 km), k600在56 - 272 cm h - 1之间变化了4.5倍,平均为113 cm h - 1。由于急流较大,科罗拉多河的气体传输速度高于其他水生生态系统。我们基于Kdrop的缩放k600的方法允许比较具有空间异质形态的河流之间的气体传输速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Air–water oxygen exchange in a large whitewater river

Air–water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was < 10 cm h− 1 in flat reaches, while k600 for the steepest rapid ranged 3600–7700 cm h− 1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m− 1), segment-integrated k600 varied between 74 and 101 cm h− 1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h− 1 with a mean of 113 cm h− 1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A preliminary exploration of the physical properties of seagrass wrack that affect its offshore transport, deposition, and retention on a beach Vegetation wakes and wake interaction shaping aquatic landscape evolution Predator–prey encounter and capture rates in turbulent environments Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence The tattered curtain hypothesis revised: Coastal jets limit cross-shelf larval transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1