分数阶高斯场:综述

IF 1.3 Q2 STATISTICS & PROBABILITY Probability Surveys Pub Date : 2014-07-21 DOI:10.1214/14-PS243
A. Lodhia, S. Sheffield, Xin Sun, Samuel S. Watson
{"title":"分数阶高斯场:综述","authors":"A. Lodhia, S. Sheffield, Xin Sun, Samuel S. Watson","doi":"10.1214/14-PS243","DOIUrl":null,"url":null,"abstract":"We discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGFs(R) = (−∆)−s/2W, where W is a white noise on Rd and (−∆)−s/2 is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter H = s − d/2. In one dimension, examples of FGFs processes include Brownian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2). Examples in arbitrary dimension include white noise (s = 0), the Gaussian free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated Gaussian field (s = d/2), Levy’s Brownian motion (s = d/2 + 1/2), and multidimensional fractional Brownian motion (d/2 < s < d/2 + 1). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the FGFs with s ∈ (0, 1) can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic 2s-stable Levy process. ∗Partially supported by NSF grant DMS 1209044. †Supported by NSF GRFP award number 1122374. ar X iv :1 40 7. 55 98 v1 [ m at h. PR ] 2 1 Ju l 2 01 4","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"13 1","pages":"1-56"},"PeriodicalIF":1.3000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/14-PS243","citationCount":"86","resultStr":"{\"title\":\"Fractional Gaussian fields: A survey\",\"authors\":\"A. Lodhia, S. Sheffield, Xin Sun, Samuel S. Watson\",\"doi\":\"10.1214/14-PS243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGFs(R) = (−∆)−s/2W, where W is a white noise on Rd and (−∆)−s/2 is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter H = s − d/2. In one dimension, examples of FGFs processes include Brownian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2). Examples in arbitrary dimension include white noise (s = 0), the Gaussian free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated Gaussian field (s = d/2), Levy’s Brownian motion (s = d/2 + 1/2), and multidimensional fractional Brownian motion (d/2 < s < d/2 + 1). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the FGFs with s ∈ (0, 1) can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic 2s-stable Levy process. ∗Partially supported by NSF grant DMS 1209044. †Supported by NSF GRFP award number 1122374. ar X iv :1 40 7. 55 98 v1 [ m at h. PR ] 2 1 Ju l 2 01 4\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":\"13 1\",\"pages\":\"1-56\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/14-PS243\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/14-PS243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/14-PS243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 86

摘要

我们讨论了一类以参数s∈R为索引的随机场,我们称之为分数阶高斯场,由fgf (R) =(-∆)- s/2W给出,其中W是Rd上的白噪声,(-∆)- s/2是分数阶拉普拉斯函数。这些字段也可以通过它们的Hurst参数H = s−d/2来参数化。在一维中,FGFs过程的例子包括布朗运动(s = 1)和分数布朗运动(1/2 < s < 3/2)。任意维度的例子包括白噪声(s = 0)、高斯自由场(s = 1)、双拉普拉斯高斯场(s = 2)、对数相关高斯场(s = d/2)、利维布朗运动(s = d/2 + 1/2)和多维分数布朗运动(d/2 < s < d/2 + 1)。这些领域在统计物理、早期宇宙宇宙学、金融、量子场论、图像处理等学科中都有应用。我们概述了分数阶高斯场,包括协方差公式、吉布斯性质、球坐标分解、线性子空间的限制、局部集定理和其他基本结果。我们还定义了一个离散分数高斯场,并解释了如何将s∈(0,1)的fgf理解为一个远程高斯自由场,其中布朗运动的势理论被各向同性2s稳定Levy过程的势理论所取代。*部分由NSF资助DMS 1209044。†由NSF GRFP奖号1122374支持。ar X iv:1 40 7。55 98 v1 [m at h. PR] 2 1 Ju 1 2 01 4
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractional Gaussian fields: A survey
We discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGFs(R) = (−∆)−s/2W, where W is a white noise on Rd and (−∆)−s/2 is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter H = s − d/2. In one dimension, examples of FGFs processes include Brownian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2). Examples in arbitrary dimension include white noise (s = 0), the Gaussian free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated Gaussian field (s = d/2), Levy’s Brownian motion (s = d/2 + 1/2), and multidimensional fractional Brownian motion (d/2 < s < d/2 + 1). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the FGFs with s ∈ (0, 1) can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic 2s-stable Levy process. ∗Partially supported by NSF grant DMS 1209044. †Supported by NSF GRFP award number 1122374. ar X iv :1 40 7. 55 98 v1 [ m at h. PR ] 2 1 Ju l 2 01 4
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
期刊最新文献
Probabilistic representations of fragmentation equations L2-small ball asymptotics for Gaussian random functions: A survey Models of random subtrees of a graph Numerical methods for backward stochastic differential equations: A survey From Markov processes to semimartingales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1