{"title":"交错和有线均匀跨越森林","authors":"Tom Hutchcroft","doi":"10.1214/17-AOP1203","DOIUrl":null,"url":null,"abstract":"We extend the Aldous-Broder algorithm to generate the wired uniform spanning forests (WUSFs) of infinite, transient graphs. We do this by replacing the simple random walk in the classical algorithm with Sznitman's random interlacement process. We then apply this algorithm to study the WUSF, showing that every component of the WUSF is one-ended almost surely in any graph satisfying a certain weak anchored isoperimetric condition, that the number of `excessive ends' in the WUSF is non-random in any graph, and also that every component of the WUSF is one-ended almost surely in any transient unimodular random rooted graph. The first two of these results answer positively two questions of Lyons, Morris and Schramm, while the third extends a recent result of the author. \nFinally, we construct a counterexample showing that almost sure one-endedness of WUSF components is not preserved by rough isometries of the underlying graph, answering negatively a further question of Lyons, Morris and Schramm.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-AOP1203","citationCount":"29","resultStr":"{\"title\":\"Interlacements and the wired uniform spanning forest\",\"authors\":\"Tom Hutchcroft\",\"doi\":\"10.1214/17-AOP1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the Aldous-Broder algorithm to generate the wired uniform spanning forests (WUSFs) of infinite, transient graphs. We do this by replacing the simple random walk in the classical algorithm with Sznitman's random interlacement process. We then apply this algorithm to study the WUSF, showing that every component of the WUSF is one-ended almost surely in any graph satisfying a certain weak anchored isoperimetric condition, that the number of `excessive ends' in the WUSF is non-random in any graph, and also that every component of the WUSF is one-ended almost surely in any transient unimodular random rooted graph. The first two of these results answer positively two questions of Lyons, Morris and Schramm, while the third extends a recent result of the author. \\nFinally, we construct a counterexample showing that almost sure one-endedness of WUSF components is not preserved by rough isometries of the underlying graph, answering negatively a further question of Lyons, Morris and Schramm.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/17-AOP1203\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/17-AOP1203\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/17-AOP1203","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Interlacements and the wired uniform spanning forest
We extend the Aldous-Broder algorithm to generate the wired uniform spanning forests (WUSFs) of infinite, transient graphs. We do this by replacing the simple random walk in the classical algorithm with Sznitman's random interlacement process. We then apply this algorithm to study the WUSF, showing that every component of the WUSF is one-ended almost surely in any graph satisfying a certain weak anchored isoperimetric condition, that the number of `excessive ends' in the WUSF is non-random in any graph, and also that every component of the WUSF is one-ended almost surely in any transient unimodular random rooted graph. The first two of these results answer positively two questions of Lyons, Morris and Schramm, while the third extends a recent result of the author.
Finally, we construct a counterexample showing that almost sure one-endedness of WUSF components is not preserved by rough isometries of the underlying graph, answering negatively a further question of Lyons, Morris and Schramm.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.