{"title":"自相关过程的改进混合指数加权移动平均-累积和控制图","authors":"Dushyant Tyagi, Vipin Yadav","doi":"10.13052/jrss0974-8024.1425","DOIUrl":null,"url":null,"abstract":"Statistical Process Control (SPC) is an efficient methodology for monitoring, managing, analysing and recuperating process performance. Implementation of SPC in industries results in biggest benefits, as enhanced quality products and reduced process variation. While dealing with the theory of control chart we generally move with the assumption of independent process observation. But in practice usually, for most of the processes the observations are autocorrelated which degrades the ability of control chart application. The loss caused by autocorrelation can be obliterated by making modifications in the traditional control charts. The article presented here refers to a combination of EWMA and CUSUM charting techniques supplementing modifications in the control limits. The performance of the referred scheme is measured by comparing average run length (ARL) with existing control charts. Also, the referred scheme is found reasonably well for detecting particularly smaller displacements in the process.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Modified Mixed Exponentially Weighted Moving Average-Cumulative Sum Control Charts for Autocorrelated Process\",\"authors\":\"Dushyant Tyagi, Vipin Yadav\",\"doi\":\"10.13052/jrss0974-8024.1425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical Process Control (SPC) is an efficient methodology for monitoring, managing, analysing and recuperating process performance. Implementation of SPC in industries results in biggest benefits, as enhanced quality products and reduced process variation. While dealing with the theory of control chart we generally move with the assumption of independent process observation. But in practice usually, for most of the processes the observations are autocorrelated which degrades the ability of control chart application. The loss caused by autocorrelation can be obliterated by making modifications in the traditional control charts. The article presented here refers to a combination of EWMA and CUSUM charting techniques supplementing modifications in the control limits. The performance of the referred scheme is measured by comparing average run length (ARL) with existing control charts. Also, the referred scheme is found reasonably well for detecting particularly smaller displacements in the process.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss0974-8024.1425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Modified Mixed Exponentially Weighted Moving Average-Cumulative Sum Control Charts for Autocorrelated Process
Statistical Process Control (SPC) is an efficient methodology for monitoring, managing, analysing and recuperating process performance. Implementation of SPC in industries results in biggest benefits, as enhanced quality products and reduced process variation. While dealing with the theory of control chart we generally move with the assumption of independent process observation. But in practice usually, for most of the processes the observations are autocorrelated which degrades the ability of control chart application. The loss caused by autocorrelation can be obliterated by making modifications in the traditional control charts. The article presented here refers to a combination of EWMA and CUSUM charting techniques supplementing modifications in the control limits. The performance of the referred scheme is measured by comparing average run length (ARL) with existing control charts. Also, the referred scheme is found reasonably well for detecting particularly smaller displacements in the process.