两阶段抽样稳健回归总体均值的比值回归估计

Pub Date : 2021-01-01 DOI:10.13052/jrss0974-8024.1427
Aamir Raza, Muhammad Noor-ul-Amin
{"title":"两阶段抽样稳健回归总体均值的比值回归估计","authors":"Aamir Raza, Muhammad Noor-ul-Amin","doi":"10.13052/jrss0974-8024.1427","DOIUrl":null,"url":null,"abstract":"The estimation of population mean is not meaningful using ordinary least square method when data contains some outliers. In the current study, we proposed efficient estimators of population mean using robust regression in two phase sampling. An extensive simulation study is conduct to examine the efficiency of proposed estimators in terms of mean square error (MSE). Real life example and extensive simulation study are cited to demonstrate the performance of the proposed estimators. Theoretical example and simulation studies showed that the suggested estimators are more efficient than the considered estimators in the presence of outliers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression-in-Ratio Estimators for Population Mean by Using Robust Regression in Two Phase Sampling\",\"authors\":\"Aamir Raza, Muhammad Noor-ul-Amin\",\"doi\":\"10.13052/jrss0974-8024.1427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of population mean is not meaningful using ordinary least square method when data contains some outliers. In the current study, we proposed efficient estimators of population mean using robust regression in two phase sampling. An extensive simulation study is conduct to examine the efficiency of proposed estimators in terms of mean square error (MSE). Real life example and extensive simulation study are cited to demonstrate the performance of the proposed estimators. Theoretical example and simulation studies showed that the suggested estimators are more efficient than the considered estimators in the presence of outliers.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss0974-8024.1427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当数据中存在异常值时,用普通最小二乘法估计总体均值是没有意义的。在目前的研究中,我们提出了在两阶段抽样中使用稳健回归的总体均值的有效估计。进行了广泛的仿真研究,以检验所提出的估计器在均方误差(MSE)方面的效率。通过实例和广泛的仿真研究证明了所提估计器的性能。理论算例和仿真研究表明,在存在异常值的情况下,建议的估计量比考虑的估计量更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Regression-in-Ratio Estimators for Population Mean by Using Robust Regression in Two Phase Sampling
The estimation of population mean is not meaningful using ordinary least square method when data contains some outliers. In the current study, we proposed efficient estimators of population mean using robust regression in two phase sampling. An extensive simulation study is conduct to examine the efficiency of proposed estimators in terms of mean square error (MSE). Real life example and extensive simulation study are cited to demonstrate the performance of the proposed estimators. Theoretical example and simulation studies showed that the suggested estimators are more efficient than the considered estimators in the presence of outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1